At the initial state: v1 = vf = 0.001053 m
3
/kg, h1 = hf = 467.11 kJ/kg, and s1 = sf = 1.4336 kJ/kgK.
The mass of the water is: m = V/v1 = 0.005/0.001053 = 4.7483 kg.
To find the final state, we will use the First Law:
Q12 = m(h2 - h1) for closed system undergoing a constant pressure process.
h2 = 1Q2/m + h1 = 2200/4.7483 + 467.11 = 930.43 kJ/kg.
At P2 = P1 = 150 kPa, this is a saturated mixture.
hf = 467.11 kJ/kg, hfg = 2226.5 kJ/kg, sf = 1.4336 kJ/kgK, and sfg = 5.7897 kJ/kgK
s2 = sf + sfg (h2 – hf )/hfg = 1.4336 + 5.7897(930.43 – 467.11)/2226.5 = 2.6384 kJ/kgK.
The entropy change of water is:
Delta Ssys= m(s2 – s1) = 4.7483(2.6384 – 1.4336) = 5.72 kJ/K.
Answer:
<em>displacement = -85 miles</em>
Explanation:
<u>Displacement
</u>
It's a magnitude used to measure the linear space between two points. It's computed as the subtraction of the final position minus the initial position which results in a vector. Notice the displacement only depends on the initial and final positions and not on the path the object has traveled.
Brayden starts to measure his position when the mile marker reads 260. Then he travels to the 150-mile marker and goes back to the 175-mile marker, his final position. As mentioned, the displacement only depends on the relative positions, so
displacement = 175 - 260 = -85 miles
Answer:
The solid sphere will reach the bottom first.
Explanation:
In order to develop this problem and give it a correct solution, it is necessary to collect the concepts related to energy conservation. To apply this concept, we first highlight the importance of conserving energy so we will match the final and initial energies. Once this value has been obtained, we will concentrate on finding the speed, and solving what is related to the Inertia.
In this way we know that,


We know as well that the lineal and angular energy are given by,

And the tangential kinetic energy as

Where
Replacing

Re-arrange for v,

We have here three different objects: solid cylinder, hollow pipe and solid sphere. We need the moment inertia of this objects and replace in the previous equation found, then,
For hollow pipe:




For solid cylinder:




For solid sphere,




Then comparing the speed of the three objects we have:


Relative dating<span> and absolute </span>dating<span> are used to determine age of fossils and geologic features, but with </span>different<span> methods. </span>Relative dating<span> uses observation of location within rock layers, while absolute </span>dating<span> uses data from the decay of radioactive substances within an object.</span>
Answer:
He is warmed up now
Explanation:
His muscles are better and stretched now