Force, F = ma
Where m = mass in kg, a = acceleration in m/s², Force, F is in N.
F = ma
2000 = m*2.2
2.2m = 2000
m = 2000/2.2
m ≈ 909.09
Mass is ≈ 909.09 kg.
Answer:
the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
Explanation:
Following Newton's second law:
net force = mass * acceleration = weight/gravity * acceleration
then denoting 1 and 2 as the first and second lift
F₁ - w= w/g *a₁
F₂ -w = w/g *a₂ = w/g * 2.07a
dividing both equations
(F₂- w)/(F₁ -w)= 2.07
(F₂- w) = 2.07 * (F₁ -w)
1.07*w = 2.07*F₁ - F₂
w = (2.07*F₁ - F₂ )/ 1.07
replacing values
w = (2.07*61.1 N - 70.9 N )/ 1.07 = 51.94 N
then the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
it is the point at infinity where it is at a distance from the curve equal to the radius of curvature lying on the normal vector. Sorry no diagram
This question apparently comes after an EARLIER one,
where you were told either the voltage across the same
capacitor or the total charge stored in it. You can't answer
THIS one without that information.