1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
9

Sir Lance a Lost new draw bridge was designed poorly and stops at an angle of 20o below the horizontal. Sir Lost and his steed s

top when their combined center of mass is 1.0 m from the end of the bridge. The bridge is 8.0 m long and has a mass of 2000 kg; the lift cable is attached to the bridge 5.0 m from the castle end and to a point 12 m above the bridge. Sir Lost’s mass combined with his armor and steed is 1000 kg.
Determine
(a) the tension in the cable and
(b) the horizontal and vertical force components acting on the bridge at the castle end.

Physics
1 answer:
zloy xaker [14]3 years ago
4 0

Answer:

The Tension T is 42120N

The Horizontal force component is 18322.2N

The Vertical force component is - 4729N

Explanation:

First, you have to find the angle between the drawbridge and the cable using sine and cosine rule. This will result in angle 44.2°. Hence, the angle between the horizontal axis and the cable will be 64.2° (44.2° + 20°).

Having done that, you apply two conditions of equilibrium.

1. THE VECTOR SUM OF ALL FORCES EQUAL ZERO.

∑Fx = 0

∑Fx = Rx - Tcos64.2 = 0

Rx = 0.435T

∑Fy = 0

∑Fy = Ry + Tsin64.2 - W - w = 0

W = 2000kg × 9.8 = 19600N

w =1000kg × 9.8 = 9800N

Ry + 0.9T = 29400N

Ry = 29400 - 0.9T

2. THE SUM TOTAL OF TORQUES EQUALS ZERO

Rx: τ = 0

Ry: τ = 0

T: τ = 5 × Tsin44.2

= 3.49T m

W: τ = 4 × 19600sin90

= 78400Nm

w: τ = 7 × 9800sin9

= 68600Nm

Note:

Rx = x component of Reaction force

Ry = y component of Reaction force.

T = Tension

W = weight of bridge

w = weight of Sir Lance a Lost and his steed

τ = torque

Note: The torque of Tension is counter clockwise while that of the weights is clockwise.

Hence,

∑τccw = ∑τcw

3.49T = 78400 + 68600

3.49T = 14700Nm

T = 147000/3.49

T = 42120N

Rx = 0.435 × 42120

Rx = 18322.2N

Ry = 29400N - (0.9×42120)N

Ry = 29400 - 34129

Ry = -4729N

Note: Ry being negative means that the hinge of the drawbridge exerts a downward force.

You might be interested in
Which of these is an example of qualitative observation?
Zanzabum
Iron nails are attracted to the magnet
4 0
3 years ago
Read 2 more answers
aluminum has 13 electrons. how many electrons are found in the outermost energy level for this atom which energy level is the ou
Stolb23 [73]
<span>The outermost energy level of an element are called the valence shell, that holds the valence electrons. they consist of  the highest energy level. In aluminum, the valence electrons are 3. </span>
8 0
3 years ago
Read 2 more answers
Which statement is true about the thermal energy of an object? Choose the correct answer. 1). Thermal energy is the internal pot
Brums [2.3K]
This thermal energy flows as heat within the box and floor, ultimately raising the temperature of both of these objects.
5 0
2 years ago
A 190 g glider on a horizontal, frictionless air track is attached to a fixed ideal spring with force constant 160 N/m. At the i
laiz [17]

(a) Let <em>x</em> be the maximum elongation of the spring. At this point, the glider would have zero velocity and thus zero kinetic energy. The total work <em>W</em> done by the spring on the glider to get it from the given point (4.00 cm from equilibrium) to <em>x</em> is

<em>W</em> = - (1/2 <em>kx</em> ² - 1/2 <em>k</em> (0.0400 m)²)

(note that <em>x</em> > 4.00 cm, and the restoring force of the spring opposes its elongation, so the total work is negative)

By the work-energy theorem, the total work is equal to the change in the glider's kinetic energy as it moves from 4.00 cm from equilibrium to <em>x</em>, so

<em>W</em> = ∆<em>K</em> = 0 - 1/2 <em>m</em> (0.835 m/s)²

Solve for <em>x</em> :

- (1/2 (160 N/m) <em>x</em> ² - 1/2 (160 N/m) (0.0400 m)²) = -1/2 (0.190 kg) (0.835 m/s)²

==>   <em>x</em> ≈ 0.0493 m ≈ 4.93 cm

(b) The glider attains its maximum speed at the equilibrium point. The work done by the spring as it is stretched away from equilibrium to the 4.00 cm position is

<em>W</em> = - 1/2 <em>k</em> (0.0400 m)²

If <em>v</em> is the glider's maximum speed, then by the work-energy theorem,

<em>W</em> = ∆<em>K</em> = 1/2 <em>m</em> (0.835 m/s)² - 1/2 <em>mv</em> ²

Solve for <em>v</em> :

- 1/2 (160 N/m) (0.0400 m)² = 1/2 (0.190 kg) (0.835 m/s)² - 1/2 (0.190 kg) <em>v</em> ²

==>   <em>v</em> ≈ 1.43 m/s

(c) The angular frequency of the glider's oscillation is

√(<em>k</em>/<em>m</em>) = √((160 N/m) / (0.190 kg)) ≈ 29.0 Hz

3 0
2 years ago
Please help!!! A river has a constant current of 3 km per hour. If a motorboat, capable of maintaining a constant speed of 20km
PilotLPTM [1.2K]
Construct a vector diagram. It will be a right-angled triangle. One vector (the hypotenuse) represents the heading of the boat, one represents the current and one represents the resultant speed of the boat, which I'll call x. Their magnitudes are 20, 3 and x. Let the required angle = theta. We have: 

<span>theta = arcsin(3/20) = approx. 8.63° </span>

<span>The boat should head against the current in a direction approx. 8.63° to the line connecting the dock with the point opposite, or approx. 81.37° to the shore line. </span>

<span>x = sqrt(20^2 - 3^2) </span>
<span>= sqrt(400 - 9) </span>
<span>= sqrt 391 </span>

<span>The boat's crossing time = </span>
<span>0.5 km/(sqrt 391 km/hr) </span>
<span>= (0.5/sqrt 391) hr </span>
<span>= approx. 0.025 hr </span>
<span>= approx. 91 seconds</span>
4 0
3 years ago
Other questions:
  • When jumping, a flea accelerates at an astounding 1300 m/s2 , but over only the very short distance of 0.51 mm ?
    9·1 answer
  • You construct a circuit containing some component C, along with other circuit elements. You want to simultaneously measure the c
    14·1 answer
  • Which statement is true about nuclear fusion? it is caused by the same process that causes nuclear fission.
    14·2 answers
  • A grating with 400 lines per mm is illuminated with light of wavelength 600.0 nm. a Determine the angles at which maxima are obs
    12·1 answer
  • A bicycle has a mass of 10kg and an acceleration of 2m/s². What is the net force of the bicycle?
    14·1 answer
  • What determines the state of matter for any substance
    10·1 answer
  • A non living factor in an ecosystem
    13·1 answer
  • Se tienen 500g de alcohol etílico a una temperatura de -40 °C ¿Cuánto calor se necesita para transformarlo a vapor a una tempera
    7·1 answer
  • Two factors affect the amount of thermal energy in an object, The amount of space between its particles and The amount of motion
    5·1 answer
  • When you serve the ball, if the ball does not land in the opposite side rectangle this is called a ______. question 2 options: f
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!