The speed of the object increases
Explanation:
We can answer this question by applying the work-energy theorem, which states that the work done on an object is equal to the change in kinetic energy of the object. Mathematically:

where
W is the work done on the object
are the final and initial kinetic energy of the object, respectively
m is the mass of the object
v is its final speed
u is its initial speed
In this case, the force does a positive amount of work on the object, so

This also implies that

And so

And therefore

which means that the speed of the object increases.
Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:

Explanation:
Given that,
An infrared telescope is tuned to detect infrared radiation with a frequency of 4.39 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 4.39 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
We know that,

So, the wavelength of the infrared radiation is
.
The magnitude of your displacement can be equal to the distance you covered, or it can be less than the distance you covered. But it can never be greater than the distance you covered.
This is because displacement is a straight line, whereas distance can be a straight line, a squiggly line, a zig-zag line, a line with loops in it, a line with a bunch of back-and-forths in it, or any other kind of line.
The straight line is always the shortest path between two points.
Answer:
The value of d is 20.4 m.
(C) is correct option.
Explanation:
Given that,
Initial velocity = 20 m/s
Final velocity = 0
We need to calculate the time
Using equation of motion

Where, u = Initial velocity
v = Final velocity
Put the value into the formula


We need to calculate the distance
Using equation of motion



Hence, The value of d is 20.4 m.
F=mg=Gm1m2/r^2
g=Gm2/r^2
g=2Gm2/(2r)^2=2Gm2/4r^2=Gm2/2r^2
So since there is half times the gravity on this unknown planet that has twice earth's mass and twice it's radius, then the person can jump twice as high. 1.5*2= 3m high