Initially, the spring stretches by 3 cm under a force of 15 N. From these data, we can find the value of the spring constant, given by Hook's law:

where F is the force applied, and

is the stretch of the spring with respect to its equilibrium position. Using the data, we find

Now a force of 30 N is applied to the same spring, with constant k=5.0 N/cm. Using again Hook's law, we can find the new stretch of the spring:
<span>Objective Lenses: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a10X (most common) eyepiece lens, we get total magnifications of 40X (4X times10X), 100X , 400X and 1000X.</span>
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 