1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kaylis [27]
3 years ago
9

A boy weighs 50 kg and is running with 225 J of energy, what is his velocity?

Physics
2 answers:
Oksanka [162]3 years ago
8 0

0.22

Explanation:

50 ÷ 225 = 0.22

<u>#CarryOnLearning</u>

Natali [406]3 years ago
8 0
0.22 Is the answer. Have a great day!
You might be interested in
A truck accelerating at 0.0083 meters/secondÆ covers a distance of 5.8 × 10Ê meters. If the truck's mass is 7,000 kilograms, wha
tigry1 [53]

work done = force * distance moved (in direction of the force)

force= mass* acceleration 

force=58.1N

58.1*(5.8*10^4)
=3,369,800 J
3 0
3 years ago
Read 2 more answers
Is ‘velocity’the displacement of an object during specific unit of time?
babunello [35]

Answer:

Yes

Explanation:

The displacement covered by a body in unit time is called velocity.

5 0
3 years ago
Read 2 more answers
In hydrogen, the transition from level 2 to level 1 has a rest wavelength of 121.6 nm.1).Find the speed for a star in which this
soldier1979 [14.2K]

Answer:

1). v = - 2960526m/s

2). Toward us

3). v = - 493421m/s

4). Toward us

5). v = 1480263m/s

6).  Away from us

7). v = 3207236m/s

8). Away from us

Explanation:

Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when it is moving away from the observer (that is known as the Doppler effect).

The wavelength at rest is 121.6 nm (\lambda_{0} = 121.6nm)

Redshift: \lambda_{measured} > \lambda_{0}

Blueshift: \lambda_{measured} < \lambda_{0}

Then, for this particular case it is gotten:

Star 1: \lambda_{measured} = 120.4nm

Star 2: \lambda_{measured} = 121.4nm

Star 3: \lambda_{measured} = 122.2nm

Star 4: \lambda_{measured} = 122.9nm

Star 1:

Blueshift: 120.4nm < 121.6nm

Toward us

Star 2:

Blueshift: 121.4nm < 121.6nm

Toward us

Star 3:

Redshift: 122.2nm > 121.6nm

Away from us

Star 4:

Redshift: 122.9nm > 121.6nm

Away from us

Due to that shift the velocity of the star can be determine by means of Doppler velocity.

v = c\frac{\Delta \lambda}{\lambda_{0}}  (1)

Where \Delta \lambda is the wavelength shift, \lambda_{0} is the wavelength at rest, v is the velocity of the source and c is the speed of light.

v = c(\frac{\lambda_{measured}- \lambda_{0}}{\lambda_{0}}) (2)

<em>Case for star 1 \lambda_{measured} = 120.4 nm:</em>

<em></em>

v = (3x10^{8}m/s)(\frac{120.4nm-121.6nm}{121.6nm})

v = - 2960526m/s

Notice that the negative velocity means that is approaching to the observer.

<em>Case for star 2 \lambda_{measured} = 121.4 nm:</em>

v = (3x10^{8}m/s)(\frac{121.4nm-121.6nm}{121.6nm})

v = - 493421m/s

<em>Case for star 3 \lambda_{measured} = 122.2 nm:</em>

v = (3x10^{8}m/s)(\frac{122.2nm-121.6nm}{121.6nm})

v = 1480263m/s

<em>Case for star 4 \lambda_{measured} = 122.9 nm:</em>

v = (3x10^{8}m/s)(\frac{122.9nm-121.6nm}{121.6nm})

v = 3207236m/s

4 0
3 years ago
A cow’s mass is 410 kg and a car’s mass is 565 kg. What is the difference between their weights?
solmaris [256]
B. 1520 is the difference between their weights.
5 0
3 years ago
31. If you threw a baseball straight out at 45 m/s from a height of 1.5 meters (A) how long would it be in the air? B) How far o
coldgirl [10]

Answer:

A) t = 0.55 s

B) x = 24.8 m

Explanation:

A) We can find the time at which the ball will be in the air using the following equation:

y_{f} = y_{0} + v_{0y}t - \frac{1}{2}gt^{2}    

Where:

y_{f} is the final height= 0  

y_{0} is the initial height= 1.5 m

v_{0y} is the component of the initial speed in the vertical direction = 0 m/s        

t: is the time =?      

g: is the gravity = 9.81 m/s²

0 = 1.5 m - \frac{1}{2}9.81 m/s^{2}t^{2}

By solving the above equation for t we have:

t = \sqrt{\frac{2*1.5 m}{9.81 m/s^{2}}} = 0.55 s  

Hence, the ball will stay 0.55 seconds in the air.

                             

B) We can find the distance traveled by the ball as follows:

x_{f} = x_{0} + v_{0x}t + \frac{1}{2}at^{2}

Where:  

a: is the acceleration in the horizontal direction = 0  

x_{f} is the final position =?  

x_{0} is the initial position = 0      

v_{0x} is the component of the initial speed in the horizontal direction = 45 m/s                                                                                            

x_{f} = x_{0} + v_{0x}t + \frac{1}{2}at^{2}

x_{f} = 0 + 45 m/s*0.55 s + 0 = 24.8 m

Therefore, the ball will travel 24.8 meters.

I hope it helps you!

3 0
2 years ago
Other questions:
  • Antiballistic missiles (ABMs) are designed to have very large accelerations so that they may intercept fast-moving incoming miss
    14·1 answer
  • Which of the following is not needed to make a model of the water cycle?
    8·1 answer
  • ____ is the thermal energy transfer that occurs from the motion of fluid in a liquid or gas.
    10·2 answers
  • A 762 kg car experiences a braking force of 9045 N and skids to a stop in 4.3 seconds. What is the speed of the car just before
    8·1 answer
  • A 5.00-V battery charges the parallel plates in a capacitor, with a plate area of 865 mm2 and an air-filled separation of 3.00 m
    9·1 answer
  • What is another way to describe the vector below?
    13·2 answers
  • Que es la expansión del universo?
    14·1 answer
  • A ball is thrown at an angle of 38° to the horizontal. What happens to the
    8·1 answer
  • A weight of 200 n is hung from a spring with a spring constant of 2500 n/m and lowered slowly. How much will the spring stretch?
    6·2 answers
  • Olivia is on a swing at the playground.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!