Answer:
Work done = 13605.44
Explanation:
Data provided in the question:
For elongation of 2.1 cm (0.021 m) work done by the spring is 3.0 J
The relation between Energy (U) and the elongation (s) is given as:
U =
................(1)
where,
k is the spring constant
on substituting the valeus in the above equation, we get
3.0 = 
or
k = 13605.44 N/m
now
for the elongation x = 2.1 + 4.1 = 6.2 cm = 0.062 m
using the equation 1, we have
U = 
or
U = 26.149 J
Also,
Work done = change in energy
or
W = 26.149 - 3.0 = 23.149 J
Answer:
k = 3.5 N/m
Explanation:
It is given that the time period the bob in pendulum is the same as its time period in spring mass system:


where,
k = spring constant = ?
g = acceleration due to gravity = 9.81 m/s²
m = mass of bob = 125 g = 0.125 kg
l = length of pendulum = 35 cm = 0.35 m
Therefore,

<u>k = 3.5 N/m</u>
The maximum speed the mass can have before it breaks is 2.27 m/s.
The given parameters:
- <em>maximum mass the string can support before breaking, m = 17.9 kg</em>
- <em>radius of the circle, r = 0.525 m</em>
The maximum speed the mass can have before it breaks is calculated as follows;

Thus, the maximum speed the mass can have before it breaks is 2.27 m/s.
Learn more about maximum speed of horizontal circle here:brainly.com/question/21971127
Using conservation of energy and momentum we get m1*v1=(m1+m2)*v2 so rearranging for v2 and plugging the given values in we get:
(200000kg*1.00m/s)/(21000kg)=.952m/s
Answer:
As voltage increases, current increases and resistance stays the same
.
Explanation:
Ohm's law gives the relationship between the voltage, resistance, and current. The mathematical form of Ohm's law is given by :

R is resistance
I is current
V is voltage
So, as voltage increases, current increases and resistance stays the same. The correct option is (A).