formula for wavelength = speed/frequency
So 1500/200 = 7.5 meters
Let's be clear: The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.
Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.
After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.
Answer:
a)q= 2800 W/m²
b)To=59.4°C
Explanation:
Given that
L = 10 mm
K= 20 W/m·K
T=30°C
h= 100 W/m²K
Ti=58°C
a)
Heat flux q
q= h ΔT
q= 100 x (58 - 30 )
q= 2800 W/m²
b)
As we know that heat transfer by Fourier law given as
Q= K A ΔT/L
Lets take outer temperature is To
So by Fourier law
To= Ti + qL/K
Now by putting the values
To= Ti + qL/K

To=59.4°C
Answer:
11760J
Explanation:
Given parameters:
Height of hill = 30m
Weight = 40kg
Unknown:
Gravitational potential energy = ?
Solution:
To find the gravitational potential energy, it is the energy due to the position of a body;
G.PE = mgh
m is the mass
g is the acceleration due to gravity
h is the height
Now insert the parameters and solve;
G.PE = 40 x 9.8 x 30 = 11760J