Answer:
Question A: 17.92m/s
Question B: 0.6 seconds
Explanation:
Question A:
Initial velocity(u)=24m/s
Height(h)=13m
acceleration due to gravity(g)=9.8m/s^2
Final velocity=v
v^2=u^2-2xgxh
v^2=24^2-2x9.8x13
v^2=24x24-2x9.8x13
v^2=576-254.8
v^2=321.2
Take them square root of both sides
v=√(321.2)
v=17.92m/s
Question B:
velocity(v)=17.92m/s
Acceleration due to gravity(g)=9.8m/s^2
Initial velocity(u)=24m/s
Time=t
v=u-gxt
17.92=24-9.8xt
Collect like terms
9.8t=24-17.92
9.8t=6.08
Divide both sides by 9.8
9.8t/9.8=6.08/9.8
t=0.6 approximately
(1) The ball is in the air for <u>1.4 seconds.</u>
(2) The horizontal velocity of the ball as it rolls off the table is<u> 6.32 m/s.</u>
(3) The vertical velocity of the ball right before it hits the ground is <u>13.72 m/s.</u>
(4) The horizontal velocity of the ball right before it hits the ground is<u> 6.32 m/s.</u>
(5) The initial vertical velocity as soon as the ball comes of the cliff is <u>13.72 m/s.</u>
<h3>What is the time of motion of the ball?</h3>
The time of motion of the ball is calculated by applying the following equation.
t = √(2h/g)
where;
- h is the height of the cliff
- g is acceleration due to gravity
t = √(2h/g)
t = √(2 x 9.63 / 9.8)
t = 1.4 seconds
The horizontal velocity of the ball is calculated as follows;
v = d/t
where;
- d is the horizontal distance travelled by the ball = 8.85 m
v = 8.85 m / 1.4 s
v = 6.32 m/s
The vertical velocity of the ball before it hits the ground is calculated as;
vf = vi + gt
vf = 0 + 9.8 x 1.4
vf = 13.72 m/s
The horizontal velocity of the ball right before it hits the ground is calculated as;
the initial velocity of a projectile = final horizontal velocity
vxf = vxi = 6.32 m/s
The initial vertical velocity as soon as the ball comes off the cliff = final vertical velocity = 13.72 m/s
Learn more about horizontal velocity here: brainly.com/question/24949996
#SPJ1
suppose the mass of a metal object be m and its specific heat capacity be s, and, H joules of heat is required to raise its temperature by t degrees Celsius
Than H is given by relation, 
Now if this object is cut in two half's, than mass of half part will also be half <em>i.e. </em>M/2
So heat required to heat the half part will be
Hence, the heat required to raise the half object to a specific temperature will also become half.
Im 99% sure
tan^-1 (6.2/22)= 15.7º
with 2 significant figures 16º