Answer:
The radius of the disc is 2.098 m.
(e) is correct option.
Explanation:
Given that,
Moment of inertia I = 12100 kg-m²
Mass of disc m = 5500 kg
Moment of inertia :
The moment of inertia is equal to the product of the mass and square of the radius.
The moment of inertia of the disc is given by
![I=\dfrac{mr^2}{2}](https://tex.z-dn.net/?f=I%3D%5Cdfrac%7Bmr%5E2%7D%7B2%7D)
Where, m = mass of disc
r = radius of the disc
Put the value into the formula
![12100=\dfrac{5500\times r^2}{2}](https://tex.z-dn.net/?f=12100%3D%5Cdfrac%7B5500%5Ctimes%20r%5E2%7D%7B2%7D)
![r=\sqrt{\dfrac{12100\times2}{5500}}](https://tex.z-dn.net/?f=r%3D%5Csqrt%7B%5Cdfrac%7B12100%5Ctimes2%7D%7B5500%7D%7D)
![r= 2.098\ m](https://tex.z-dn.net/?f=r%3D%202.098%5C%20m)
Hence, The radius of the disc is 2.098 m.
A)
It is a launch oblique, therefore the initial velocity in the vertical direction is zero. Space Hourly Equation in vertical, we have:
Through Definition of Velocity, comes:
![\Delta v= \frac{\Delta S}{\Delta t} \\ v_x= \frac{36}{2} \\ \boxed {v_{x}=18m/s}](https://tex.z-dn.net/?f=%5CDelta%20v%3D%20%20%5Cfrac%7B%5CDelta%20S%7D%7B%5CDelta%20t%7D%20%20%5C%5C%20v_x%3D%20%5Cfrac%7B36%7D%7B2%7D%20%20%5C%5C%20%5Cboxed%20%7Bv_%7Bx%7D%3D18m%2Fs%7D)
B)
Using the Velocity Hourly Equation in vertical direction, we have:
The angle of impact is given by:
![cos(\theta) =\frac{v_{x}}{v_{y}} \\ cos(\theta) = \frac{18}{20} \\ cos(\theta) =0.9 \\ arccos(0.9)=\theta \\ \boxed {\theta \approx 25.84}](https://tex.z-dn.net/?f=cos%28%5Ctheta%29%20%3D%5Cfrac%7Bv_%7Bx%7D%7D%7Bv_%7By%7D%7D%20%20%5C%5C%20cos%28%5Ctheta%29%20%3D%20%5Cfrac%7B18%7D%7B20%7D%20%20%5C%5C%20cos%28%5Ctheta%29%20%3D0.9%20%5C%5C%20arccos%280.9%29%3D%5Ctheta%20%5C%5C%20%5Cboxed%20%7B%5Ctheta%20%5Capprox%2025.84%7D)
If you notice any mistake in my english, please let me know, because i am not native.
The gravitational field is the Force divided by the mass
Call g the gravitational fiel, F the force exerted by the earth and m the mass of the telescope.
g = F / m
g=9.1x10^4 N / 1.1 x 10^4 kg = 8.27 N/kg
Note that the unit N/kg is equivalent to m/s^2
Answer:
Answer: Given m = 10 kg and . F = 20 N. Thus, the force required to accelerate the object upward direction is 20 N.
Explanation:
Answer: Given m = 10 kg and . F = 20 N. Thus, the force required to accelerate the object upward direction is 20 N.