<span>You want to focus on the car's acceleration.
(Hope this helps you! :) Have a nice day!)</span>
concave <span>ray diagrams were constructed in order to determine the general location, size, orientation, and type of image formed by concave mirrors. Perhaps you noticed that there is a definite relationship between the image characteristics and the location where an object placed in front of a concave mirror. but, convex</span><span>ray diagrams were constructed in order to determine the location, size, orientation, and type of image formed by concave mirrors. The ray diagram constructed earlier for a convex mirror revealed that the image of the object was virtual, upright, reduced in size and located behind the mirror. </span>
It's a form of mechanical energy
Answer:
C
Explanation:
Sound waves speed up noticeably when moving through a solid or liquid, because all it is is just particles colliding; and particles are way closer together with those states of matter.
The speed of light can change when moving through different substances, but this is dependent on complicated factors such as frequency, polarization, intensity, et. cetera
The important part is that it does change speed, so your answer is C.
Hope this helps!
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.