Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
When the activation energy of an exothermic reaction decreases at a given temperature, the reaction rate increases because the <span>number of successful effective collisions is higher. More of the reactants collide and are able to form products. Hope this answers the question. have a nice day.</span>
To solve this problem we will apply the concepts related to the Magnetic Force, this is given by the product between the current, the body length, the magnetic field and the angle between the force and the magnetic field, mathematically that is,

Here,
I = Current
L = Length
B = Magnetic Field
= Angle between Force and Magnetic Field
But 

Rearranging to find the Magnetic Field,

Here the force per unit length,

Replacing with our values,


Therefore the magnitude of the magnetic field in the region through which the current passes is 0.0078T
-- There are three pairs of mass with gravitational forces between them.
-- The distances between the masses are the same for each pair.
-- The only other quantity that determines the strength of the gravitational
force is the product of the masses.
-- The product of the masses is greatest for the apple and the watermelon,
so the strength of the gravitational force between them is the greatest.