Answer:he can read 1 and 3/12 or 15/12 books in an hour.
Step-by-step explanation:
Let's solve this problem step-by-step.
STEP-BY-STEP SOLUTION:
We will be using simultaneous equations to solve this problem.
First we will establish the equations which we will be using as displayed below:
Equation No. 1 -
A + B = 90°
Equation No. 1 -
A = 2B + 12
To begin with, let's make ( A ) the subject in the first equation as displayed below:
Equation No. 1 -
A + B = 90
A = 90 - B
Next we will substitute the value of ( A ) from the first equation into the second equation and solve for ( B ) as displayed below:
Equation No. 2 -
A = 2B + 12
( 90 - B ) = 2B + 12
- B - 2B = 12 - 90
- 3B = - 78
B = - 78 / - 3
B = 26°
Then we will substitute the value of ( B ) from the second equation into the first equation to solve for ( A ) as displayed below:
A = 90 - B
A = 90 - ( 26 )
A = 64°
ANSWER:
Therefore, the answer is:
A = 64°
B = 26°
Please mark as brainliest if you found this helpful! :)
Thank you <3
Answer:
The 93% confidence interval for the true proportion of masks of this type whose lenses would pop out at 325 degrees is (0.3154, 0.5574). This means that we are 93% sure that the true proportion of masks of this type whose lenses would pop out at 325 degrees is (0.3154, 0.5574).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:

93% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 93% confidence interval for the true proportion of masks of this type whose lenses would pop out at 325 degrees is (0.3154, 0.5574). This means that we are 93% sure that the true proportion of masks of this type whose lenses would pop out at 325 degrees is (0.3154, 0.5574).
Answer:
-3
Step-by-step explanation:
The graph goes down 3 for each one on the x-axis