Answer:
30.63 m
Explanation:
Using y = ut + 1/2gt² where u = initial speed of block = 0 m/s, g = acceleration due to gravity = 9.8 m/s² and t = time of fall = 2.5 s and y = height of fall.
So, substituting the values of the variables into the equation, we have
y = ut + 1/2gt²
y = 0 m/s × 2.5 s + 1/2 × 9.8 m/s² × (2.5 s)²
y = 0 m + 4.9 m/s² × 6.25 s²
y = 0 m + 30.625 m
y = 30.625 m
y ≅ 30.63 m
So, the brick fell 30.63 m
Would love to help you but there are no options for me to choose from
Answer:
(d) Negative.
Explanation:
let's test each at a time.
(a) It can't be 0, because cup would slide back other wise.
(b) Positive, well if forward is positive, than the work done against the forward acceleration must be negative , so it can't be positive.
(c) Equal to non-conservative work done by the car's engine.
well no, because work done by car's engine dosen't go all of it into getting car to move, so it can't be that.
(d) negative, this look like it, because work that friction does must be nagative to counteract positive thrust of car which is positive and in forward direction.
(d) this can't be true.
So the answer is (d) negative.
The force the escaping gas exerts of the rocket is 10.42 N.
<h3>
Force escaping gas exerts</h3>
The force the escaping gas exerts of the rocket is calculated as follows;
F = m(v - u)/t
where;
- m is mass of the rocket
- v is the final velocity of the rocket
- u is the initial velocity of the rocket
- t is time of motion
F = (0.25)(40 - 15)/0.6
F = 10.42 N
Thus, the force the escaping gas exerts of the rocket is 10.42 N.
Learn more about force here: brainly.com/question/12970081
#SPJ1