Gravitational potential energy<span> is </span>energy<span> an object possesses because of its position in a </span>gravitational<span> field. The most common use of </span>gravitational potential energy<span> is for an object near the surface of the Earth where the </span>gravitational<span> acceleration can be assumed to be constant at about 9.8 m/s</span>2<span>.</span>
Answer:
D They have longer seasons
Explanation:
I think this because the days will be longer so that means that the seasons will change also.
<h2>Answer:</h2>
<h2>Explanation:</h2>
First, let's refer to the distance formula:
, where d is distance, v is velocity or speed and t is time.
Now, let's find the distance covered by each individual speed that the car had:
<h3>1. Speed 1.</h3>
In order to use the formula, we need to convert minutes into hours since the speed is given in km/h.
21.1 min/60= 0.35 h.
Now, apply the distance formula.
d=(0.35h)*(86.8km/h)= 30.38 km.
<h3>2. Speed 2.</h3>
Convert minutes to hours again and do the same calculations.
10.6min/60=0.18h
d=(0.18h)*(106km/h)= 19.08 km.
<h3>3. Speed 3.</h3>
36.5min/60= 0.61h
d=(0.61h)*(30.9km/h)= 18.85 km.
<h3>4. Obtain the total distance.</h3>
The total distance must be given by the addition of all individual distances traveled by the car on each speed:
Total distance= 30.38 km + 19.08 km + 18.85 km= 68.31 km.
Given: Mass m = 400 Kg; Height h = 3 m; g = 10 m/s²
Required: Work = ?
Formula: Work = Force x distance F = ma a = g F = mg
W = fd
W = mgh
W = (400 Kg)(10 m/s²)( 3 m)
W = 12,000 Kg.m²/s²
W = 12,000 J