Answer: C) The concentration of HI will increase as the system approaches equilibrium.
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:
![Q_c=\frac{[HI]^2}{[H_2]^1[I_2]^1}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5E1%5BI_2%5D%5E1%7D)



Thus as
, the reaction will shift towards the right i.e. towards the product side.
Answer:
76.03 °C.
Explanation:
Equation:
C2H5OH(l) --> C2H5OH(g)
ΔHvaporization = ΔH(products) - ΔH (reactants)
= (-235.1 kJ/mol) - (-277.7 kK/mol)
= 42.6 kJ/mol.
ΔSvaporization = ΔS(products) - ΔS(reactants)
= 282.6 J/K.mol - 160.6 J/K.mol
= 122 J/K.mol
= 0.122 kJ/K.mol
Using gibbs free energy equation,
ΔG = ΔH - TΔS
ΔG = 0,
T = ΔH/ΔS
T = 42.6/0.122
= 349.18 K.
Coverting Kelvin to °C,
= 349.18 - 273.15
= 76.03 °C.
Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer:
beneath the surface of the Pacific Ocean comes from samples and video collected by an unmanned lander,