1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
podryga [215]
3 years ago
8

Residents of a small city voted on whether to allow a developer to build a shopping center the number of votes in favor of the s

hopping center was 4400 the number of vote against the shopping center was 17600 what percent of the voters were in the favor of building the shopping center
Mathematics
1 answer:
Sergeu [11.5K]3 years ago
8 0
Total number of voters=4400+17600=22000

Percentage of voters in favour of the shopping center: 4400/22000=1/5=20/100=20%

Therefore, 20% of the voters are in favour of the shopping center
You might be interested in
What is -3 divided by 1/6
Nonamiya [84]
The answer is -18...

5 0
3 years ago
Read 2 more answers
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Rozlyn invested $2000 in an account that pays 4.25% annual simple interest. She will not make any additional deposits or withdra
PilotLPTM [1.2K]

Answer:

$850

Step-by-step explanation:

Interest = Principal x Rate x Time

I = 2000(.0425)(10)

I = 850

3 0
3 years ago
Please fill in the blanks. It may or may not be the same word(s) for each.
Alex787 [66]

Answer:

1. Intersecting

2. Transversal

3. Adjacent

3 0
3 years ago
What is the solution to the equation 2^(x+4) -12- 20?<br> O x=0<br> O x=1<br> O x=2<br> O x=9
masya89 [10]
The answers is 2x+4−12−20
6 0
3 years ago
Read 2 more answers
Other questions:
  • How do you solve this?
    14·1 answer
  • How many meters does it take to make 1 kilometer
    15·2 answers
  • Solve this equation for X.
    11·1 answer
  • 12 divided by 9 tenths and hundredths
    13·1 answer
  • Subtract (3 + 2i) from (-9 - 8i)
    14·1 answer
  • 100 + 8² - (2 + 3) • 10 ÷ 2 <br><br> simplify that nd ill give brainliest
    9·2 answers
  • There are 10 students in a class. The teacher chooses 3 students to go to the
    11·1 answer
  • Please explain the process as well, from Khan Academy~<br><br> Figure B and Figure A (Triangles)
    9·1 answer
  • What is the domain and range ?
    11·2 answers
  • In a recent survey of 1002 people, 701 said that they voted in a recent presidential election. Voting records show that 61% of e
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!