Answer:
wen you stick to mangnetits togater
Explanation:
Answer
given,
y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]
length of the rope = 1.33 m
mass of the rope = 3.31 g
comparing the given equation from the general wave equation
y(x,t)= A cos[k x+ω t]
A is amplitude
now on comparing
a) Amplitude = 2.20 mm
b) frequency =


f = 118.25 Hz
c) wavelength




d) speed


v = 105.84 m/s
e) direction of the motion will be in negative x-direction
f) tension


T = 27.87 N
g) Power transmitted by the wave


P = 0.438 W
Answer:
Should be moving away
Explanation:
Red is a longer wavelength therefore further away. Wavelength is stretched out more and on the red end. I hope this is right. I decided to research and answer since you didn’t have other answers. Are you taking this on edg? I hope I helped!
<span>The charged balloon will stick to a neutral wall because of the Static Electricity:
</span>
The matter is formed by atoms and these atoms are composed of electrons, protons and neutrons (the electrons have a negative charge, the protons have a positive charge and the neutrons have no charge).
As the balloon is charged (It gained electrons), and the charge of the same sign repel each other, when it approaches the wall, the electrons of this wall will move away, and the positive charges (protons) will remain in the nearest area to the balloon. As the charges of different signs are attracted, the balloon will be stuck to the wall.