Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2
<span>The answers are as follows:
(a) how many meters are there in 11.0 light-years?
11.0 light years ( 365 days / 1 year ) ( 24 h / 1 day ) ( 60 min / 1 h ) ( 60 s / 1 min ) ( 2.998x10^8 m/s ) = 1.04x10^17 m
(b) an astronomical unit (au) is the average distance from the sun to earth, 1.50 × 108 km. how many au are there in 11.0 light-years?
1.04x10^17 m ( 1 au / </span>1.50 × 10^8 km <span>) ( 1 km / 1000 m) = 693329.472 au
(c) what is the speed of light in au/h? au/h
</span>2.998 × 10^8 m/s ( 1 au / 1.50 × 10^8 km ) ( 1 km / 1000 m) ( 3600 s / 1 h ) = 7.1952 au/h
Answer:
t=40s,
Explanation:
If you can swim in still water at 0.5m/s, the shortest time it would take you to swim from bank to bank across a 20m wide river, if the water flows downstream at a rate of 1.5m/s, is most nearly:
from the question the swimmer will have a velocity which is equal to the sum of the speed of the water and the velocity to swi across the bank
Vt=v1+v2
the time is takes to swim across the bank will be
DY=Dv*t
DY=distance across the bank
Dv=ther velocity of the swimmer across the bank
t=20/ 0.5m/s,
t=40s, time it takes to swim across the bank
velocity is the rate of displacement
displacement is distance covered in a specific direction
Am sorry what can you be more specific
Answer: The unpolarized light's intensity is reduced by the factor of two when it passes through the polaroid and becomes linearly polarized in the plane of the Polaroid. When the polarized light passes through the polaroid with the plane of polarization at an angle
with respect to the polarization plane of the incoming light, the light's intensity is reduced by the factor of
(this is the Law of Malus).
Explanation: Let us say we have a beam of unpolarized light of intensity
that passes through two parallel Polaroid discs with the angle of
between their planes of polarization. We are asked to find
such that the intensity of the outgoing beam is
. To solve this we follow the steps below:
Step 1. It is known that when the unpolarized light passes through a polaroid its intensity is reduced by the factor of two, meaning that the intensity of the beam passing through the first polaroid is

This beam also becomes polarized in the plane of the first polaroid.
Step 2. Now the polarized beam hits the surface of the second polaroid whose polarization plane is at an angle
with respect to the plane of the polarization of the beam. After passing through the polaroid, the beam remains polarized but in the plane of the second polaroid and its intensity is reduced, according to the Law of Malus, by the factor of
This yields
. Substituting from the previous step we get

yielding

and finally,
