Answer:
3,200,000,000 J
Explanation:
Work is defined as the amount of energy transferred as an object is moved a certain distance with a certain force. Mathematically, we express this with the equation

where W is work (measured in joules), F is the force applied (in Newtons), and s is the distance, also called the <em>displacement </em>(in meters).
Here, we have F = 1,600,000 N and s = 2000 m, so our work will be
J
Answer:
10 db
Explanation:
Detailed explanation and calculation is shown in the image below
The particle moves with constant speed in a circular path, so its acceleration vector always points toward the circle's center.
At time
, the acceleration vector has direction
such that

which indicates the particle is situated at a point on the lower left half of the circle, while at time
the acceleration has direction
such that

which indicates the particle lies on the upper left half of the circle.
Notice that
. That is, the measure of the major arc between the particle's positions at
and
is 270 degrees, which means that
is the time it takes for the particle to traverse 3/4 of the circular path, or 3/4 its period.
Recall that

where
is the radius of the circle and
is the period. We have

and the magnitude of the particle's acceleration toward the center of the circle is

So we find that the path has a radius
of

The work and energy theorem allows finding the result for where the kinetic energy of the car is before stopping is:
The energy becomes:
- An important part in work on discs.
- A part in non-conservative work due to friction.
Work is defined by the scalar product of force and displacement.
W = F . d
Where the bold indicate vectors, W is work, F is force and d is displacement.
The work energy theorem relates work and kinetic energy.
W = ΔK =
In this case the vehicle stops therefore its final kinetic energy is zero, consequently the work is:
W = - K₀
Therefore, the initial kinetic energy that the car has is converted into work in its brakes. In reality, if assuming that there is friction, an important part is transformed into non-conservative work of the friction force, this work can be seen in a significant increase in the temperature of the discs on which the work is carried out.
In conclusion, using the work-energy theorem we can find the result for where the kinetic energy of the car is before stopping is:
The energy becomes:
- An important part in work on the discs.
- A part in non-conservative work due to friction.
Learn more here: brainly.com/question/17056946
Answer:
Explanation:
An object's resistance depends on its form and the substance it is made from. The electrical resistance R of the cylinder, as you might expect, is directly proportional to its length L, similar to a pipe's resistance to fluid flow. The longer the cylinder, the more charges of collisions with its atoms can occur. The bigger the cylinder diameter, the more current it can carry.