Answer:
E= -3.166 cosωt V
Explanation:
Given that
I = Imax sinωt
L= 8.4 m H
Imax= 4 A
f = ω/2π = 60.0 Hz
ω = 120π rad/s
We know that self induce E given as




E= -3166.72 cosωt m V
E= -3.166 cosωt V
This is the induce emf.
Answer:
15.7m/s
Explanation:
To solve this problem, we use the right motion equation.
Here, we have been given the height through which the ball drops;
Height of drop = 14.5m - 1.9m = 12.6m
The right motion equation is;
V² = U² + 2gh
V is the final velocity
U is the initial velocity = 0
g is the acceleration due to gravity = 9.8m/s²
h is the height
Now insert the parameters and solve;
V² = 0² + 2 x 9.8 x 12.6
V² = 246.96
V = √246.96 = 15.7m/s
You have no options here so I'll just answer. It can cause a rise in heart rate and greatly increases the risk of overheating and even death. If you grab the rabbit too hard, you risk breaking/fracturing a bone or causing other kinds of damage, whether externally or internally, to the rabbit.
80 km per hour i believe. i’ll admit i’m american so we don’t use km lol, but the math should be the same. total distance = 120km, and total time = 1.5 hours. 120/1.5 = 80.
speed is the magnitude of velocity which is given as 90 km/hr and it does not change. only the direction change , the direction at any time is given by the tangent to the circle at that time and location.
from the diagram , at north side, the velocity is directed in west direction