The molar mass of gas = 238.29 g/mol
<h3>Further explanation</h3>
Given
mass = 81.5 g
P=1.75 atm
V=4.92 L
T=307 K
Required
molar mass
Solution
The gas equation can be written


So the equation becomes :

Input the value :

Answer:
4.285 L of water must be added.
Explanation:
Hello there!
In this case, for this dilution-like problems, we need to figure out the final volume of the resulting solution so that we would be able to obtain the correct volume of diluent (water) to be added. In such a way, we can obtain the final volume, V2, as shown below:

Thus, by plugging in the initial molarity, initial volume and final molarity (0.587 M) we obtain:

It means we need to add:

Of diluent water.
Regards!
Write the chemical equation for reaction
that is
2SO2+O2 --->2SO2
find the moles of SO2 used = moles=mass/molar mass of so2
= 32g/80g/mol=0.4 moles
by use of reacting ratio between SO2 and SO3 which is 2:2 therefore the moles of so3 is also = 0.4 moles
STP 1 mole = 22.4L.
what about 0.4moles
= 0.4 /1 x22.4=8.96 liters
Answer: Option (3) is the correct answer.
Explanation:
Atomic number of lithium is 3 and its electronic distribution is 2, 1. So, to attain stability it will loose an electron and hence, it forms a single bond.
Atomic number of chlorine is 17 and it has 7 valence electrons. Hence, in order to attain stability it will gain one electron and therefore, it forms a single bond only.
Atomic number of nitrogen is 7 and its electronic distribution is 2, 5. Therefore, to attain stability it needs to gain 3 more electrons. Hence, a nitrogen atom is able to form a triple bond and also it is able to form a double bond.
Hydrogen has atomic number 1 and it attains stability by gaining one electron. Therefore, a hydrogen atoms always forms a single bond.
Atomic number of fluorine is 9 and its electronic distribution is 2, 7. To complete its octet it needs to gain one electron. Hence, a fluorine atom always forms a single bond.
Thus, we can conclude that out of the given options nitrogen is most likely to form multiple (double or triple) bonds.
The kinetic energy and the physical state of water depend strongly on the temperature;
- Firstly, The kinetic energy of water on a hot stove is higher than that on the counter in the freezer; that the kinetic energy is directly proportional to the temperature according to the relation:
; where R is the universal gas constant, T is the temperature and NA is Avogadro number.
As the temperature increases, the speed of colliding molecules increases and the kinetic energy increases.
- Secondly, The physical state of water depends on the temperature; water has three states (gas, liquid and solid) depends on the temperature.
- If a glass of water is putt on the counter in the freezer, it will be converted to the solid state (ice).
- And, as if it is putt on a hot stove, it will be vapor (gaseous state).