Answer:100c
Explanation:
water boils at 100c the normal boiling point is the temperature at which the vapour pressure is equal to the standard sea-level atmospheric pressure
Answer:
ΔS° = -268.13 J/K
Explanation:
Let's consider the following balanced equation.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:
ΔS° = ∑np.Sp° - ∑nr.Sr°
where,
ni are the moles of reactants and products
Si are the standard molar entropies of reactants and products
ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]
ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]
ΔS° = -268.13 J/K
Answer:
Properties of Metals:
- Shiny
-Malleable
-Good Conductors of electric current
- Good conductors of heat
Properties of Non-metals:
- Dull
- Not Malleable
- Bad conductors of electric current but good electric insulators
- Poor conductors of heat
Note: The first dash for the Properties of metals goes with the first dash of Properties of Non-metals and so on.
Answer:
s orbitals - spherical shape
p orbitals - dumbbell shape
d orbitals- dxy, dyz , dzx -double dumbbell
- dx²-y²- double dumbbell (along axis)
-dz² -dumbbell with electron cloud
( along the axis)
therefore here the answer is 2s and 3s
Answer:
The protein has 4 subunits: 2 subunits of 90 kDa, 1 subunit of 160 kDa and 1 subunit of 60 kDa
Explanation:
In gel electrophoresis, the SDS agent produces denaturation of the protein and confers negative charge, so the protein subunits can migrate according to their masses. It produces dissociation of the protein in its subunits but it cannot disrupt disulphyde bridges (S-S) that can bond subunits together.
From the data, with SDS we observe 3 bands ⇒ 180 kDa + 160 kDa + 60 kDa
The addition of dithiotreitol (DTT), a reducing agent, produces the disruption of disulphyde bridges. From the data:
With DTT ⇒ 160 kDa + 90 kDa + 60 kDa
We observe that 160 kDa and 60 kDa subunits are conserved (they are the same as with SDS only), but 180 kDa subunit is missing and in its place appears a band of 90 kDa - a half 180 kDa.
So, the band at 180 kDa is composed by two subunits bonded by a disulphyde bridge.
Therefore, the composition of the protein is: <em>1 subunit of 160 kDa, 2 subunits of 90 kDa and 1 subunit of 60 kDa</em>.