Answer:
The mass of the jar and contents remained the same after the metal was burned.
Explanation:
My prediction about the experimental results is that the mass of the jar and contents remained the same after the metal was burned in the jar.
This is compliance with the law of conservation of mass which states that in a chemical reaction, matter is neither created nor destroyed by bonds are rearranged for new compounds to form.
- In compliance with this law, it is expected that the mass of the jar and its content will remain the same before and after the reaction.
- No new material was added and no material was removed from the jar.
I think the correct answer is b. Temperature is proportional to the average kinetic energy so when temperarure rises so will the average kinetic energy. I hope this helps. Let me know if anything is unclear.
Answer:
Explanation:
How many mols do you have?
1 mol = 6.02 * 10^23 atoms
x mol = 6.25 * 10 ^32 atoms
1/x = 6.02*10^23 / 6.25 * 10^32 Cross multiply
6.02 * 10^23 * x = 1 * 6.25 * 10^32 Divide by 6.02 * 10^23
x = 6.25 * 10*32/ 6.02 ^10^23
x = 1.038 * 10^9 mols which is quite large.
Find the number of grams. (Use the value for copper on your periodic table. I will just use an approximate number.)\
1 mol of copper = 63 grams.
1.038 * 10^9 mols of copper = x
1/1.038 * 10^9 = 63/x Cross multiply
x = 1.038 * 10^9 * 63
x = 6.54 * 10^10 grams of copper.
The Answer is D: Reactor products charge huge batteries.
Answer:
1.8×10^-2mm or 0.018mm
Explanation:
Density = mass/Volume
But volume= area×thickness
Area= 50ft2= 46451.52cm2
Mass=8oz= 226.7962g
Density= 2.70g/cm3
Thickness= mass/density ×area
= 226.7962/46451.52×2.70= 1.8×10-3cm= 1.8×10^-2mm