![y=\ln(6+x^3)\implies y'=\dfrac{3x^2}{6+x^3}](https://tex.z-dn.net/?f=y%3D%5Cln%286%2Bx%5E3%29%5Cimplies%20y%27%3D%5Cdfrac%7B3x%5E2%7D%7B6%2Bx%5E3%7D)
The arc length of the curve is
![\displaystyle\int_0^5\sqrt{1+\frac{9x^4}{(6+x^3)^2}}\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_0%5E5%5Csqrt%7B1%2B%5Cfrac%7B9x%5E4%7D%7B%286%2Bx%5E3%29%5E2%7D%7D%5C%2C%5Cmathrm%20dx)
which has a value of about 5.99086.
Let
. Split up the interval of integration into 10 subintervals,
[0, 1/2], [1/2, 1], [1, 3/2], ..., [9/2, 5]
The left and right endpoints are given respectively by the sequences,
![\ell_i=\dfrac{i-1}2](https://tex.z-dn.net/?f=%5Cell_i%3D%5Cdfrac%7Bi-1%7D2)
![r_i=\dfrac i2](https://tex.z-dn.net/?f=r_i%3D%5Cdfrac%20i2)
with
.
These subintervals have midpoints given by
![m_i=\dfrac{\ell_i+r_i}2=\dfrac{2i-1}4](https://tex.z-dn.net/?f=m_i%3D%5Cdfrac%7B%5Cell_i%2Br_i%7D2%3D%5Cdfrac%7B2i-1%7D4)
Over each subinterval, we approximate
with the quadratic polynomial
![p_i(x)=f(\ell_i)\dfrac{(x-m_i)(x-r_i)}{(\ell_i-m_i)(\ell_i-r_i)}+f(m_i)\dfrac{(x-\ell_i)(x-r_i)}{(m_i-\ell_i)(m_i-r_i)}+f(r_i)\dfrac{(x-\ell_i)(x-m_i)}{(r_i-\ell_i)(r_i-m_i)}](https://tex.z-dn.net/?f=p_i%28x%29%3Df%28%5Cell_i%29%5Cdfrac%7B%28x-m_i%29%28x-r_i%29%7D%7B%28%5Cell_i-m_i%29%28%5Cell_i-r_i%29%7D%2Bf%28m_i%29%5Cdfrac%7B%28x-%5Cell_i%29%28x-r_i%29%7D%7B%28m_i-%5Cell_i%29%28m_i-r_i%29%7D%2Bf%28r_i%29%5Cdfrac%7B%28x-%5Cell_i%29%28x-m_i%29%7D%7B%28r_i-%5Cell_i%29%28r_i-m_i%29%7D)
so that the integral we want to find can be estimated as
![\displaystyle\sum_{i=1}^{10}\int_{\ell_i}^{r_i}p_i(x)\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5E%7B10%7D%5Cint_%7B%5Cell_i%7D%5E%7Br_i%7Dp_i%28x%29%5C%2C%5Cmathrm%20dx)
It turns out that
![\displaystyle\int_{\ell_i}^{r_i}p_i(x)\,\mathrm dx=\frac{f(\ell_i)+4f(m_i)+f(r_i)}6](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7B%5Cell_i%7D%5E%7Br_i%7Dp_i%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac%7Bf%28%5Cell_i%29%2B4f%28m_i%29%2Bf%28r_i%29%7D6)
so that the arc length is approximately
![\displaystyle\sum_{i=1}^{10}\frac{f(\ell_i)+4f(m_i)+f(r_i)}6\approx5.99086](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5E%7B10%7D%5Cfrac%7Bf%28%5Cell_i%29%2B4f%28m_i%29%2Bf%28r_i%29%7D6%5Capprox5.99086)