x(b+c)+3(b+c) = (x+3)(b+c)
Hello there! So, y = mx + b is in slope-intercept form, where m represents the slope, b represents the y-intercept, and y and x remain unfilled. First off, let's solve for the slope. The formula for slope is y2 - y1 / x2 - x1, where you subtract the first x and y coordinates from the second x and y coordinates. So it would be formed like this:
9 - 4 / 6 - (-4)
Let's subtract. 9 - 4 is 5. 6 - (-4) is 10. 5/10 is 1/2 in simplest form. The slope for this equation is 1/2. Now, let's find the y-intercept. We will find that by plugging one of the points into the equation and solving for b. The x and y coordinates will be filled in by that coordinate. Let's use (-4, 4) for this problem. We will also plug in the slope. In this case, the problem will look like this:
4 = (1/2)(-4) + b
Now, let's multiply 1/2 and -4 to get -2. Now, to get b by itself, subtract 2 to both sides to isolate the b. -2 + 2 cancels out. 4 + 2 is 6. b = 6. There. The equation of the line in slope-intercept form is y = 1/2x + 6.
$5000 × 1.1%=$55
$55 × 12 mos. in a year= $660 yearly on this percent
calculate
$660 × 8 years from now =$5280
so the answer would be 1.1% I assume
Answer:
64
Step-by-step explanation:
You need to do 4*4*4 to get your answer.
Hope this helps.
<span>ow far does the first car go in the 2 hours head start it gets?
Now, at t = 2 hours, both cars are moving. How much faster is the second car than the first car? How long will it take to recover the head start? You can determine this by dividing the head start by the difference in the two speeds. If car 1 has a 20 mile head start, and car 2 is 5 mph faster, then it will take 20/5 = 4 hours to catch up.
</span>You could also write two equations, one for each car, showing how far they have gone in a variable amount of time. Set the two equations equal to each other and solve for the value of the time. Note that the second car's equation will use (t-2) for the time, because it doesn't start driving until t = 2.