I think it’s the second one: magnetic domains must come in pairs—one north and one south
W=F*s
W=9000*0
W=0
W:Work
F:Force
s:Distance
Answer:
34 m/s
Explanation:
Potential energy at top = kinetic energy at bottom + work done by friction
PE = KE + W
mgh = ½ mv² + Fd
mg (d sin θ) = ½ mv² + Fd
Solving for v:
½ mv² = mg (d sin θ) − Fd
mv² = 2mg (d sin θ) − 2Fd
v² = 2g (d sin θ) − 2Fd/m
v = √(2g (d sin θ) − 2Fd/m)
Given g = 9.8 m/s², d = 150 m, θ = 28°, F = 50 N, and m = 65 kg:
v = √(2 (9.8 m/s²) (150 m sin 28°) − 2 (50 N) (150 m) / (65 kg))
v = 33.9 m/s
Rounded to two significant figures, her velocity at the bottom of the hill is 34 m/s.
Answer:
44.6 N
Explanation:
Draw a free body diagram of the block. There are four forces on the block:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force F pulling right 30° above horizontal.
Sum of forces in the y direction:
∑F = ma
N + F sin 30° − mg = 0
N = mg − F sin 30°
Sum of forces in the x direction:
∑F = ma
F cos 30° − Nμ = 0
F cos 30° = Nμ
N = F cos 30° / μ
Substitute:
mg − F sin 30° = F cos 30° / μ
mg = F sin 30° + (F cos 30° / μ)
Plug in values:
mg = 20 N sin 30° + (20 N cos 30° / 0.5)
mg = 44.6 N
Answer:
Explanation:19,2 or 0/4 or 5 or 40,4