Hello!

Use the equation:

Where:
m = mass of the object (kg)
g = acceleration due to gravity (≈9.8 m/s)
h = height above ground (m)
Plug the given values into the equation:
PE = 7500 · 9.8 · 100
PE = 7,350,000 Joules.
A heavy weight suspended within a moving box needs to overcome inertia, resulting in a slight delay in the motion of the weight after the box moves. <u>Option B.</u>
<u />
The principle underlying the construction of a seismometer is to have a heavy weight suspended from a spring on a pedestal or inside a movable box. A seismograph is an instrument that records and measures the details of an earthquake. A seismograph uses a seismograph to record data.
Elastic deformation bends an object, whereas repulsion returns it to its original shape. This instrument is nothing more than an oscillating rod or pendulum that begins to vibrate when a tremor occurs. The vibration system has a pin. The pen records seismic waves on a sheet of paper that moves underneath. By studying these waves scientists can create a complete map of earthquakes.
Learn more about Seismograph construction here:-brainly.com/question/16047884
#SPJ4
Title,Scale,Date of Publication,North Arrow (Legend,Location Information,and Source of Information)
Answer:
(a) a = (2i + 4.5j) m/s^2
(b) r = ro + vot + (1/2)at^2
Explanation:
(a) The acceleration of the particle is given by:

vo: initial velocity = (3.00i -2.00j) m/s
v: final velocity = (9.00i + 7.00j) m/s
t = 3s
by replacing the values of the vectors and time you obtain:
![\vec{a}=\frac{1}{3s}[(9.00-3.00)\hat{i}+(7.00-(-2.00))\hat{j}]\\\\\vec{a}=(2\hat{i}+4.5\hat{j})m/s^2](https://tex.z-dn.net/?f=%5Cvec%7Ba%7D%3D%5Cfrac%7B1%7D%7B3s%7D%5B%289.00-3.00%29%5Chat%7Bi%7D%2B%287.00-%28-2.00%29%29%5Chat%7Bj%7D%5D%5C%5C%5C%5C%5Cvec%7Ba%7D%3D%282%5Chat%7Bi%7D%2B4.5%5Chat%7Bj%7D%29m%2Fs%5E2)
(b) The position vector is given by:

where vo = (3.00i -2.00j) m/s and a = (2.00i + 4.50j)m/s^2
It is a particle detector used for detecting ionizing radiation.