Data !
hope this helped <3
Surface tension is the direct measure of the cohesive forces between liquid molecules that allows them to form "film", making it more difficult to move an object through the liquid surface. Compared to other known liqiuds, the surface tension of water is much greater.
'H' = height at any time
'T' = time after both actions
'G' = acceleration of gravity
'S' = speed at the beginning of time
Let's call 'up' the positive direction.
Let's assume that the tossed stone is tossed from the ground, not from the tower.
For the stone dropped from the 50m tower:
H = +50 - (1/2) G T²
For the stone tossed upward from the ground:
H = +20T - (1/2) G T²
When the stones' paths cross, their <em>H</em>eights are equal.
50 - (1/2) G T² = 20T - (1/2) G T²
Wow ! Look at that ! Add (1/2) G T² to each side of that equation,
and all we have left is:
50 = 20T Isn't that incredible ? ! ?
Divide each side by 20 :
<u>2.5 = T</u>
The stones meet in the air 2.5 seconds after the drop/toss.
I want to see something:
What is their height, and what is the tossed stone doing, when they meet ?
Their height is +50 - (1/2) G T² = 19.375 meters
The speed of the tossed stone is +20 - (1/2) G T = +7.75 m/s ... still moving up.
I wanted to see whether the tossed stone had reached the peak of the toss,
and was falling when the dropped stone overtook it. The answer is no ... the
dropped stone was still moving up at 7.75 m/s when it met the dropped one.
Dddddddddddddddwwwwwwdwwwww
Answer:
2592 km/h
Explanation:
Given that a bullet is shot from a rifle with a velocity of 720 m/s. What is the velocity of the bullet in km/h.
The velocity = 720 m/s
Solution
To convert metres per second to kilometer per hour, you will multiply by 3600 and divide by 1000
720 × 3600/1000
720 × 3.6
72 × 36
2592 km/h
Therefore, the velocity of the bullet in kilometer per hour is 2592 km/h