#1) A
#2) E
#3) C
#4) 0.5840
#5) 0.6945
#6) 0.4911
#7) D
#8) G
#9) 0.4375
#10) 0.5203
The formula we use for this is

,
where

is the speed of sound, f is the frequency (or pitch) of the note, and λ is the wavelength.
#1) 0.77955f = 343
Divide both sides by 0.77955:
0.77955f/0.77955 = 343/0.77955
f = 439.997 ≈ 440. This is the pitch for A.
#2) 0.52028f = 343
Divide both sides by 0.52028, and we get f = 659.260. This is the pitch for E.
#3) 0.65552f = 343
Divide both sides by 0.65552, and we get f = 523.25. This is the pitch for C.
#4) 587.33λ = 343
Divide both sides by 587.33 and we get λ = 0.583999 ≈ 0.5840.
#5) 493.88λ = 343
Divide both sides by 493.88, and we get λ = 0.6945.
#6) 698.46λ = 343
Divide both sides by 698.46 and we get λ = 0.49108 ≈ 0.4911.
#7) 0.5840f = 343
Divide both sides by 0.5840 and we get f = 587.3288 ≈ 587.33. This is the pitch for D.
#8) 0.4375f = 343
Divide both sides by 0.4375 and we get f = 784. This is the pitch for G.
#9) 783.99λ = 343
Divide both sides by 783.99 and we get λ = 0.4375.
#10) 659.26λ = 343
Divide both sides by 659.26 and we get λ = 0.52028 ≈ 0.5203.
A prism's volume is the area of the face that does not have more than 1 equal counterpart mulitplied by the height of the entire prism, in which the height of the prism is not any of the sidelengths of the face whose area is being multiplied.
3.5 is rounded to the nearest tenth.
2/3 • 1/5 = 2/15
'of' always means multiplication.