Answer:
option B
Explanation:
given,
Satellite B has an orbital radius nine times that of satellite A.
R' = 9 R
now, orbital velocity of the satellite A
........(1)
now, orbital velocity of satellite B
from equation 1
hence, the correct answer is option B
i think it’s B. sorry if i’m wrong
V^2=u^2 +2aS
U is found first by considering that first 8 secs and using v=u+at. {different v and u though}
V=-u+gt.
Magnitude of u = magnitude of v if there is no resistance ( because the conservation of energy says the k. E. must be the same when it passes you as when it left your hand).... up is negative here, down is positive.
V+v=gt
2v= g x 8
V=4xg.= the initial velocity for the next calculation
V^2=(4g)^2+(2xgx21)
So v can be calculated.
Answer:
The answer is time
Explanation:
So when youre given force and distance, you can determine work done
Work Done = Force × Distance travelled in the
direction of the force
Since Power = Work Done/ Time
when you know work done, and you want to find power, you will need time.
Because you have work done already, you dont need energy. Though you can use energy and time to find work too. The alternative formula for Power would be:
Power = Energy Converted/Time
Answer:
the spring compressed is 0.1878 m
Explanation:
Given data
mass = 3 kg
spring constant k = 750 N/m
vertical distance h = 0.45
to find out
How far is the spring compressed
solution
we will apply here law of mass of conservation
i.e
gravitational potential energy loss = gain of eastic potential energy of spring
so we say m×g×h = 1/2× k × e²
so e² = 2×m×g×h / k
so
we put all value here
e² = 2×m×g×h / k
e² = 2×3×9.81×0.45 / 750
e² = 0.0353
e = 0.1878 m
so the spring compressed is 0.1878 m