1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tcecarenko [31]
2 years ago
12

Interchangeably means​

Physics
2 answers:
Allisa [31]2 years ago
5 0

Answer:

capable of being interchanged

especially : permitting mutual substitution

interchangeable parts

Explanation:

short answer is it means something that can be changed

ryzh [129]2 years ago
3 0

Answer:

Interchangeable is something that can be used in the same manner as something else without any important differences.

or in a more simple way

something that can be exchange

For example when two sweaters look almost the same and you could easily wear either one with a particular skirt, this is an example of when the sweaters can be worn interchangeably.

You might be interested in
A lab cart with a mass of 15 kg is moving with constant velocity, v, along a straight horizontal track. A student drops a 2 kg m
lbvjy [14]

The equation 15v_{i} + 2*0 = (15 + 2)v_{f} (option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.  

The horizontal momentum is given by:

p_{i} = p_{f}

m_{1}v_{1}_{i} + m_{2}v_{2}_{i} = m_{1}v_{1}_{f} + m_{2}v_{2}_{f}

Where:

  • m₁: is the mass of the lab cart = 15 kg
  • m₂: is the <em>mass </em>of the object dropped = 2 kg
  • v_{1}_{i}: is the initial velocity of the<em> lab cart </em>
  • v_{2}_{i}: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
  • v_{1}_{f}: is the final velocity of the<em> lab cart </em>
  • v_{2}_{f}: is the <em>final velocity</em> of the <em>object </em>

Then, the horizontal momentum is:

15v_{1}_{i} + 2*0 = 15v_{1}_{f} + 2v_{2}_{f}

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

15v_{1}_{i} + 2*0 = v_{f}(15 + 2)

Therefore, the equation 15v_{i} + 2*0 = (15 + 2)v_{f} represents the horizontal momentum (option 3).

Learn more about linear momentum here:

  • brainly.com/question/2141713?referrer=searchResults
  • brainly.com/question/2400186?referrer=searchResults

I hope it helps you!            

4 0
3 years ago
a bal is launched upward with a velocity of v0 from the edge of a cliff of height D. it reaches a maximum height of H above its
lilavasa [31]

Answer:

D/H =15

Explanation:

  • We can find first the peak height H, taking into consideration, that at the maximum height, the ball will reach momentarily to a stop.
  • At this point, we can find the value of H, applying the following kinematic equation:

       v_{f} ^{2} -v_{0} ^{2} = 2* g* H (1)

  • If vf=0, if we assume that the positive direction is upwards, we can find the value of H as follows:

       H = \frac{v_{0} ^{2} }{2*g} (2)

  • We can use the same equation, to find the value of D, as follows:

        v_{f} ^{2} -v_{1} ^{2} = 2* g* D (3)

  • In order to find v₁, we can use the same kinematic equation that we used to get H, but now, we know that v₀ = 0.
  • When we replace these values in (1), we find that  v₁ = -v₀.
  • Replacing in (3), we have:

        (4*v_{0})^{2} - (-v_{0}) ^{2}  = 2* g* D\\ \\ 15*v_{0}^{2}  = 2*g*D

  • Solving for  D:

       D = \frac{15*v_{0} ^{2} }{2*g}

  • From (2) we know that H can be expressed as follows:

       H = \frac{v_{0} ^{2} }{2*g}

  • ⇒ D = 15 * H

        \frac{D}{H} = 15

3 0
3 years ago
Can someone please help me with this physics question? I'm desperate!
Lelu [443]

Answer:

a) 2·√10 seconds

b) Linda should be approximately 30.6 meters

c) Jenny's speed at the 100-m mark is approximately 6.325 m/s

Explanation:

The speed with which Linda is running = 8.6 m/s

The point Jenny starts = The 80-m mark

The acceleration of Jenny = 1.0 m/s²

a) The time it takes Jenny to run from the 80-m mark to the 100-m mark, <em>t</em>, is given as follows

Δs = u·t + (1/2)·a·t²

Δs = Distance = 100-m - 80-m = 20-m

u = The initial velocity of Jenny = 0

a = Jenny's acceleration = 1.0 m/s²

∴ 20 = 0×t + (1/2) × 1 × t² = t²/2

20 = t²/2

t = √(20 × 2) = 2·√10

The time it takes Jenny to run from the 80-m mark to the 100-m mark = 2·√10 seconds

b) The distance Linda runs in t = 2·√10 seconds, d = v × t

Given that Linda's velocity, v = 8.6 m/s, we have;

d = 8.0 × 2·√10 = 16·√10

The distance Linda runs in t = 2·√10 seconds = 16·√10 meters ≈ 50.6 meters

Therefore, Linda should be approximately (50.6 - 20) meters = 30.6 meters behind Jenny when Jenny starts running

c) Jenny's speed at the 100 m mark is given as follows;

v = u + a·t

t = 2·√10 seconds, a = 1.0 m/s², u = 0

∴ v = 0×t + 1.0×2·√10 = 2·√10 ≈ 6.325

Jenny's speed at the 100-m mark ≈ 6.325 m/s

3 0
2 years ago
7. What is the velocity of an object that has a mass of 4.5 kilograms and
labwork [276]

Answer:

266.66 m/s

Explanation:

p=mv

1200=4.5v

v=266.66 m/s

7 0
2 years ago
Select the correct answer.
skelet666 [1.2K]

Answer:

B is the best answer for the question

6 0
3 years ago
Read 2 more answers
Other questions:
  • With what speed must a ball be thrown vertically from ground level to rise to a maximum height of 41 m
    9·1 answer
  • Acceleration problem <br> Show work plz
    15·1 answer
  • Conventionally, the field strength around a charged object is the direction of the force acting on a .
    5·2 answers
  • Why do astronauts need to wear pressurized suits in space?
    12·1 answer
  • When drawing up liquid into a micropipette, put the tip in the liquid at a Choose... degree angle, push the plunger to the Choos
    5·1 answer
  • 3. The propeller of a World War II fighter plane is 2.30 m in diameter. (a) What is its angular velocity in radians per second i
    6·1 answer
  • 1. What is the primary difference between an ideal emf device and a real emf device? a) The electric potential of a real emf dev
    10·1 answer
  • A spring had a spring constant of 48N/m. The end of the spring hangs 8m above the ground. How much weight can be placed on the s
    10·1 answer
  • Explain in terms of impulse how padding reduces forces in a collision. State this in terms of a real example, such as the advant
    11·1 answer
  • If the octupus had twelve arms then how many arms would the crab have show your work
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!