1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
3 years ago
5

An electron is in motion at 4.0 × 106 m/s horizontally when it enters a region of space between two parallel plates, as shown, s

tarting at the negative plate. The electron deflects downwards and strikes the bottom plate. The magnitude of the electric field between the plates is 4.0 x 102 N/C and separation between the charged plates is 2.0 cm. Determine the horizontal distance travelled by the electron when it hits the plate.
Physics
1 answer:
max2010maxim [7]3 years ago
4 0

Answer:

xmax = 9.5cm

Explanation:

In this case, the trajectory described by the electron, when it enters in the region between the parallel plates, is a semi parabolic trajectory.

In order to find the horizontal distance traveled by the electron you first calculate the vertical acceleration of the electron.

You use the Newton second law and the electric force on the electron:

F_e=qE=ma             (1)

q: charge of the electron = 1.6*10^-19 C

m: mass of the electron = 9.1*10-31 kg

E: magnitude of the electric field = 4.0*10^2N/C

You solve the equation (1) for a:

a=\frac{qE}{m}=\frac{(1.6*10^{-19}C)(4.0*10^2N/C)}{9.1*10^{-31}kg}=7.03*10^{13}\frac{m}{s^2}

Next, you use the following formula for the maximum horizontal distance reached by an object, with semi parabolic motion at a height of d:

x_{max}=v_o\sqrt{\frac{2d}{a}}             (2)

Here, the height d is the distance between the plates d = 2.0cm = 0.02m

vo: initial velocity of the electron = 4.0*10^6m/s

You replace the values of the parameters in the equation (2):

x_{max}=(4.0*10^6m/s)\sqrt{\frac{2(0.02m)}{7.03*10^{13}m/s^2}}\\\\x_{max}=0.095m=9.5cm

The horizontal distance traveled by the electron is 9.5cm

You might be interested in
Black holes must have a mass three or more times the mass of _____.
tia_tia [17]
The answer is <span>d. the sun</span>
7 0
3 years ago
Read 2 more answers
A particle, of mass 6 kg, is in equilibrium on a rough horizontal plane under a force o-f magnitude T N, which acts at an angle
Helga [31]

Answer:

T is less than or equal to 19 N

Explanation:

3 0
3 years ago
You push a cart with mass 15 kg forward , giving it an acceleration of 3 m/s ^ 2 . How much force did you apply ? O A. 0.2N O B.
Alexandra [31]

Answer: force = mass x accelegation

Explanation: 15x3 = 45 N

7 0
3 years ago
Read 2 more answers
Neutron stars consist only of neutrons and have unbelievably high densities. a typical mass and radius for a neutron star might
Tanya [424]
<span>Density is 3.4x10^18 kg/m^3 Dime weighs 1.5x10^12 pounds The definition of density is simply mass per volume. So let's divide the mass of the neutron star by its volume. First, we need to determine the volume. Assuming the neutron star is a sphere, the volume will be 4/3 pi r^3, so 4/3 pi 1.9x10^3 = 4/3 pi 6.859x10^3 m^3 = 2.873x10^10 m^3 Now divide the mass by the volume 9.9x10^28 kg / 2.873x10^10 m^3 = 3.44588x10^18 kg/m^3 Since we only have 2 significant digits in our data, round to 2 significant digits, giving 3.4x10^18 kg/m^3 Now to figure out how much the dime weighs, just multiply by the volume of the dime. 3.4x10^18 kg/m^3 * 2.0x10^-7 m^3 = 6.8x10^11 kg And to convert from kg to lbs, multiply by 2.20462, so 6.8x10^11 kg * 2.20462 lb/kg = 1.5x10^12 lb</span>
4 0
3 years ago
Your low-flow showerhead is delivering water at 1.2×10−4m3/s, about 2.0 gallons per minute.
Oksanka [162]

To solve this problem it is necessary to apply the fluid mechanics equations related to continuity, for which the proportion of the input flow is equal to the output flow, in other words:

Q_1 = Q_2

We know that the flow rate is equivalent to the velocity of the fluid in its area, that is,

Q = VA

Where

V = Velocity

A = Cross-sectional Area

Our values are given as

Q_2 = 1.2*10^{-4}m^3/s

d = 0.021m

r = \frac{0.021}{2} = 0.0105m

Since there is continuity we have now that,

V_1A_1 = Q_2

V_1A_1 = 1.2*10^{-4}

V_1 = \frac{1.2*10^{-4}}{A_2}

V_1 = \frac{1.2*10^{-4}}{\pi r^2}

V_1 = \frac{1.2*10^{-4}}{\pi (0.0105)^2}

V_1 =0.347m/s

Therefore the speed of the water's house supply line is 0.347m/s

7 0
3 years ago
Other questions:
  • Water falls without splashing at a rate of 0.370 l/s from a height of 2.90 m into a 0.690-kg bucket on a scale. if the bucket is
    8·1 answer
  • Iron reacts with sulfur to form iron sulfide. If 60 grams of iron reacts with sulfur to produce 90 grams of iron sulfide, how mu
    6·1 answer
  • speed of sound is 343 Ms at 20 degrees Celsius. The frequency heard from the sound is 256 Hz. what is the sounds wavelength?
    6·1 answer
  • A jet taxiing down the runway receives word that it must return to the gate. The jet is traveling 37.6 m/s when the pilot receiv
    12·1 answer
  • checking your understanding: which of the following would pose the mist immediate danger to your hearing???? a) a singing trio t
    5·1 answer
  • Which statement is true?
    15·1 answer
  • A cell containing cyanamide is least likely to carry on the process of what transport
    12·1 answer
  • 3.
    14·1 answer
  • What are the 2 types of electricity
    8·1 answer
  • What do we call living things that share characteristics including processes that make life possible?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!