The Himalayas, Andes, and the Alps are some <span />
As the boy kicks the football with an angle, due to the effect of the gravitational force, the ball would follow a projectile path which is parabolic in nature. From this idea, we can derive equations pertaining to the maximum height that the ball would reach. At the maximum height of the ball, the velocity of the ball would be equal to zero. From the equations for projectile motion, we would obtain the equation as follows:
Maximum height = v0^2 sin^2 (theta) / 2g
Maximum height = (28.0 m / s )^2 sin^2 (30.0) / 2(9.8 m / s^2)
Maximum height = 10 m
The maximum height that the ball would reach would be 10 m.
Answer and Explanation: <u>Centripetal</u> <u>Acceleration</u> is the change in velocity caused by a circular motion. It is calculated as:

v is linear speed
r is radius of the curve the object in traveling along
For its first lap:

After a while:


Comparing accelerations:




<u>With linear speed </u><u>4 times faster</u><u>, centripetal acceleration is </u><u>16 times greater.</u>
If kl is kiloliters and dl is deciliters, 2019kl=2.019e+7
When analyzing inelastic collisions, we need to consider the law of conservation of momentum, which states that the total momentum, p, of the closed system is a constant. In the case of inelastic collisions, the momentum of the combined mass after the collision is equal to the sum of the momentum of each of the initial masses.
p1+p2+...=pf
In our case we only have two masses, which makes our problem fairly simple. Lets plug in the formula for momentum; p=mv.
m1v1+m2v2=(m1+m2)vf
To find the velocity of the combined mass we simply rearrange the terms.
vf=m1v1+m2v2m1+m2
Plug in the values given in the problem.
vf=(3.0kg)(1.4m/s)+(2.0kg)(0m/s)03.0kg+2.0kg
vf=.84m/s