Explanation:
We use the Theorem of conservation of mechanical energy for finding the velocity when it strikes the ground:
Ei = Ef
Ki + Ui = Kf + Uf
Ui = Kf
m g h = 1/2 m v^2
v = sqrt(2gh)
So the momentum will be:
p = mv = m * sqrt(2gh)
Wavelength*frequency=velocity
(331m/s)/(.6m)
Frequency = 551.666 1/s
Velocity = distance/time
v = (35)/(1/2)
v = 70 km/h
60 km/h for 25 minutes
25 minutes = 25/60 hour
distance= velocity * time
d =(60) * (25/60)
d = 25 km
ΔV = { V(initial) - V(final) } / time
v= (70-60) / (45/60)
average velocity = 13.33 km/h
avg veloticy = 3.7 m/s
<span>
</span>
E = 0.5mv^2 = 0.5*44*10^2 = 2200J
Answer:
10.347 minutes.
Explanation:
According to F = ma, she exerts force on camera of the magnitude
F = 0.67Kg*12m/
= 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a =
.
and velocity of V = 0.1130801680m/s.
at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).