The climate<span> was generally warmer and more humid than today, probably because of very active volcanism associated with unusually high rates of seafloor spreading.
</span><span>The first placental mammals appeared at the beginning of the Cretaceous. The Cretaceous saw the rise and extinction of the toothed birds, Hesperornis and Ichthyornis. The earliest fossils of birds resembling loons, grebes, cormorants, pelicans, flamingos, ibises, rails, and sandpipers were from the Cretaceous.</span>
Answer:
a. Quadruped arm and opposite leg raise
Explanation:
Quadruped arm and opposite leg lift
- Kneel on the floor, lean forward and place your hands down.
- Keep your knees in line with your hips and hands directly under your shoulders.
- Simultaneously raise one arm and extend the opposite leg, so that they are in line with the spine.
- Go back to the starting position.
This method is usually used as an alternative to iso-abs exercise or also known as a bridge, which allows you to exercise the abdominal and spinal area at the same time.
It is also used together with other exercises for the treatment of hyperlordosis.
Answer:
The needed energy to melt of ice is 1670 J.
Explanation:
Given that,
Mass of ice = 5 g
Specific latent heat = 334000 J/kg
We need to calculate the energy
Using formula of energy

Where, m = mass
L = latent heat
Put the value into the formula


Hence, The needed energy to melt of ice is 1670 J.
a) 10 m/s
b) 25 m
Explanation:
a)
The body is moving with a constant acceleration, therefore we can solve the problem by using the following suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
t is the time
For the body in this problem:
u = 0 (the body starts from rest)
is the acceleration
t = 5 s is the time
So, the final velocity is

b)
In this second part, we want to calculate the distance travelled by the body.
We can do it by using another suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
s is the distance travelled
Here we have
u = 0 (the body starts from rest)
is the acceleration
v = 10 m/s is the final velocity
Solving for s,
