1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ratelena [41]
3 years ago
13

Which type of bonds do polar covalent bonds break down in chemical reactions?

Chemistry
1 answer:
Vlada [557]3 years ago
3 0

Answer:

(C) im pretty sure is the answer

Explanation:

You might be interested in
Is pre ap chemistry hard in high school?
UkoKoshka [18]

If you don't practice enough it's obviously going to be hard but if you practice enough it's going to be a piece of cake so don't think if it's going to be hard or not just think it's going to be worth the try at the very end

8 0
2 years ago
Read 2 more answers
Based on the greenhouse effect, if the amount of carbon dioxide in the air decreased, what would happen?
choli [55]
A) the average global temp. Would decrease
7 0
3 years ago
Burning a compound of calcium, carbon, and nitrogen in oxygen in a combustion train generates calcium oxide , carbon dioxide , n
mylen [45]

The question is incomplete, here is the complete question:

Burning a compound of calcium, carbon, and nitrogen in oxygen in a combustion train generates calcium oxide (CaO), carbon dioxide (CO_2), nitrogen dioxide (NO_2), and no other substances. A small sample gives 2.389 g CaO, 1.876 g CO_2, and 3.921 g NO_2 Determine the empirical formula of the compound.

<u>Answer:</u> The empirical formula for the given compound is CaCN_2

<u>Explanation:</u>

The chemical equation for the combustion of compound having calcium, carbon and nitrogen follows:

Ca_xC_yN_z+O_2\rightarrow CaO+CO_2+NO_2

where, 'x', 'y' and 'z' are the subscripts of calcium, carbon and nitrogen respectively.

We are given:

Mass of CaO = 2.389 g

Mass of CO_2=1.876g

Mass of NO_2=3.921g

We know that:

Molar mass of calcium oxide = 56 g/mol

Molar mass of carbon dioxide = 44 g/mol

Molar mass of nitrogen dioxide = 46 g/mol

<u>For calculating the mass of carbon:</u>

In 44g of carbon dioxide, 12 g of carbon is contained.

So, in 1.876 g of carbon dioxide, \frac{12}{44}\times 1.876=0.5116g of carbon will be contained.

<u>For calculating the mass of nitrogen:</u>

In 46 g of nitrogen dioxide, 14 g of nitrogen is contained.

So, in 3.921 g of nitrogen dioxide, \frac{14}{46}\times 3.921=1.193g of nitrogen will be contained.

<u>For calculating the mass of calcium:</u>

In 56 g of calcium oxide, 40 g of calcium is contained.

So, in 2.389 g of calcium oxide, \frac{40}{56}\times 2.389=1.706g of calcium will be contained.

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Calcium =\frac{\text{Given mass of Calcium}}{\text{Molar mass of Calcium}}=\frac{1.706g}{40g/mole}=0.0426moles

Moles of Carbon =\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{0.5116g}{12g/mole}=0.0426moles

Moles of Nitrogen = \frac{\text{Given mass of Nitrogen}}{\text{Molar mass of Nitrogen}}=\frac{1.193g}{14g/mole}=0.0852moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.0426 moles.

For Calcium = \frac{0.0426}{0.0426}=1

For Carbon = \frac{0.0426}{0.0426}=1

For Nitrogen = \frac{0.0852}{0.0426}=2

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of Ca : C : N = 1 : 1 : 2

Hence, the empirical formula for the given compound is CaCN_2

3 0
3 years ago
A student placed 18.5 g of glucose (C6H12O6) in a volumetric flask, added enough water to dissolve the glucose by swirling, then
mamaluj [8]

Answer:

1.30464 grams of glucose was present in 100.0 mL of final solution.

Explanation:

Molarity=\frac{moles}{\text{Volume of solution(L)}}

Moles of glucose = \frac{18.5 g}{180 g/mol}=0.1028 mol

Volume of the solution = 100 mL = 0.1 L (1 mL = 0.001 L)

Molarity of the solution = \frac{0.1028 mol}{0.1 L}=1.028 mol/L

A 30.0 mL sample of above glucose solution was diluted to 0.500 L:

Molarity of the solution before dilution = M_1=1.208 mol

Volume of the solution taken = V_1=30.0 mL

Molarity of the solution after dilution = M_2

Volume of the solution after dilution= V_2=0.500L = 500 mL

M_1V_1=M_2V_2

M_2=\frac{M_1V_1}{V_2}=\frac{1.208 mol/L\times 30.0 mL}{500 mL}

M_2=0.07248 mol/L

Mass glucose are in 100.0 mL of the 0.07248 mol/L glucose solution:

Volume of solution = 100.0 mL = 0.1 L

0.07248 mol/L=\frac{\text{moles of glucose}}{0.1 L}

Moles of glucose = 0.07248 mol/L\times 0.1 L=0.007248 mol

Mass of 0.007248 moles of glucose :

0.007248 mol × 180 g/mol = 1.30464 grams

1.30464 grams of glucose was present in 100.0 mL of final solution.

4 0
3 years ago
How many atoms are in 85.1 grams of neon
strojnjashka [21]
Convert the mass to moles . 

85.1 g ÷ 20.18 g/mol = 4.21704658

convert the moles to molecules

4.2170 mol × 6.022^23 molecules/mol = 2.539^24
7 0
3 years ago
Other questions:
  • The fatty acids in the tail of a phospholipid molecule are _____. nonpolar and hydrophobic
    12·1 answer
  • For the reaction 2Fe + 3Cl2 → 2FeCl3 which of the following options gives the correct reactant:reactant ratio? Fe:Cl2 = 1:1 Fe:C
    11·1 answer
  • Will mark brainliest if correct!!
    15·1 answer
  • How does particles of substance behave at its melting point?
    10·2 answers
  • Why is graphite used as a lubricant
    14·2 answers
  • 1. If 100 mL of a gas, originally at 760 torr, is compressed to a pressure of 120 kPa
    9·1 answer
  • What is a cut circuit
    11·1 answer
  • Octane (C8H18) is a component of gasoline that burns
    15·1 answer
  • Which of the following groups of materials would
    5·2 answers
  • 5. When. 0.333g of a particular molecular compound dissolves in 33.3 grams of benzene, the freezing point was observed to drop b
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!