Answer:
What about hot air balloons? They work by similar principles. If you heat up a gas it expands. In the case of a hot air balloon, when the gas inside the balloon expands the extra gas is pushed out the bottom of the balloon, meaning that there are fewer atoms inside the balloon, meaning that the air in the balloon is lighter than the air outside the balloon.
The amount of lifting power is controlled by how hot the air is. If you heat the air inside the balloon 100 degrees F hotter than the outside air temperature, then the air inside the balloon will be about 25 percent lighter than the air outside the balloon. So a cubic foot of air weighs about 35 grams at 32 degrees F. A cubic foot of hot air at 132 degrees F will weigh 25 percent less, or about 26.5 grams. The difference is 8.5 grams or so. So a hot air balloon has to be much bigger to support the same weight, but it will float because hotter air is lighter than cooler air.
Explanation:
The amount of lifting power
Answer:
- <em>The molar mass of an element is the mass of </em><u>one mole of atoms of the element.</u>
Explanation:
<em>The molar mass of an element </em>is its atomic mass, i.e. the mass in grams of one mole of atoms of the element.
Remember 1 mol is approximately 6.022 × 10²³.
So, 1 mol of atoms is 6.022 × 10²³ atoms.
The molar mass is an average: it is the weighted average mass of the natural isotopes of the element, taking into account their relative abundance.
For example, the molar mass or atomic mass of carbon is 12,0107 g/mol, instead of 12.0000, becasue carbon exists in several forms (isotopes), and so the weighted average is not a whole number.
So let's convert this amount of mL to grams:

Then we need to convert to moles using the molar weight found on the periodic table for mercury (Hg):

Then we need to convert moles to atoms using Avogadro's number:
![\frac{6.022*10^{23}atoms}{1mole} *[8.135*10^{-2}mol]=4.90*10^{22}atoms](https://tex.z-dn.net/?f=%20%5Cfrac%7B6.022%2A10%5E%7B23%7Datoms%7D%7B1mole%7D%20%2A%5B8.135%2A10%5E%7B-2%7Dmol%5D%3D4.90%2A10%5E%7B22%7Datoms%20)
So now we know that in 1.2 mL of liquid mercury, there are
present.
B: produces energy for the cell
Answer:D. It has indefinite shape but definite volume.
Explanation: The property and characteristics of liquids is it does not have a definite shape since it copies and conform on the shape of its container but it has a definite of fixed volume.