Answer:
11.7 m
Explanation:
I assume north is the y direction and x is the east direction, so Δx refers to the displacement in the east direction.
First, find the time it takes for the velocity to change from directly north to directly east.
Given (in the y direction):
v₀ = 2.88 m/s
v = 0 m/s
a = 0.350 m/s² sin(-52.0°) = -0.276 m/s²
Find: t
v = at + v₀
(0 m/s) = (-0.276 m/s²) t + (2.88 m/s)
t = 10.4 s
Given (in the x direction):
v₀ = 0 m/s
a = 0.350 m/s² cos(-52.0°) = 0.215 m/s²
t = 10.4 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (10.4 s) + ½ (0.215 m/s²) (10.4 s)²
Δx = 11.7 m
Answer:
a. an increase in the mass on the spring.
Explanation:
An increase in the mass on the spring will increase the period of an oscillating spring mass system.
Mathematically, the period of an oscillating spring mass system is given by the formula;
T = 2π √(m/k)
Where;
T is the period.
m is the mass of the spring.
k is the spring constant.
Hence, the mass of a spring is directly proportional to the period of oscillation of the spring.
This ultimately implies that, as the mass of the spring increases, the period of oscillation will increase. Similarly, the period of oscillation will decrease with an increase in the spring constant.
The velocity equation is 
Known facts:
- t = 3.83s
- a= -3.04
- intial velocity = 0
Plug into equation known quantities:

Thus the final velocity is -11.6432m/s
Hope that helps!
Answer:
A. The iron-nickel alloy melts due to hot temperatures.
Explanation:
Answer:
concentric with the wire
Explanation:
the magnetic field around a long straight, current carrying wire form concentric circles around the wire.