Balance each one by adding electrons to make the charges on both sides the same:
Sn--> Sn2+ + 2 e-
Ag+ + 1 e- --> Ag
Now, you have to have the same number of electrons in the two half-reactions, so multiply the second one by 2 to get:
2 Ag+ + 2 e- --> 2 Ag
Now, just add the two half reactions together, cancelling anything that's the same on both sides:
2 Ag+ + Sn --> Sn2+ + 2 Ag
And you're done.
Exothermic reaction is where there is release of energy during a reaction
The enthalpy of exothermic reaction is negative
The relation between energy of products, reactants and enthalpy of reaction is
Enthalpy of reaction = sum of enthalpy of formation of products - sum of enthalpy of formation of reactants
.
As enthalpy of reaction is negative, it means the enthalpy of products is less than the enthalpy of reactants so answer is
:
In an exothermic reaction the energy of the product is less than the energy of the reactants.
They are different because they formed at different distances from the sun.
Both acids and bases produce a part of a water molecule. Bases dissociate hydroxide (–OH) ions and acids, hydrogen (H+) ions that when combined form water. Both are also very corrosive when they are strong enough that they fully dissociate in water.
Answer:
B. Salt, NaCl, is produced by the process of evaporation of seawater or brine. If the surface area of the water is increased, the same volume of water evaporates faster.
C. The Haber process combines hydrogen and nitrogen to make ammonia. The two gases are passed through a reactor under pressure and at high temperatures. If iron is added to the reactor, the yield of ammonia increases.
Explanation:
Evaporation of water is responsible for the production of sodium chloride also known as table salt. Sodium and chlorine are present in water. When more evaporation of water occurs, sodium and chlorine come close together forming sodium chloride. Haber process is responsible for the production of ammonia which is used as fertilizer. For speed up the process, catalyst is used such as iron in order to complete the reaction in less time. Iron binds hydrogen and nitrogen with each other.