Answer:
It's because removal of electron from an atom, reduces the size of an atom.
Explanation:
When an electron is removed from an atom, it becomes an ion and in this case it will become a postive ion.
When an electron is removed from an atom, the charge balance of an atom is disturbed and positive charge increases in comparison to the negative charge. This results in increase nuclear (positive) charge which exerts greater attraction on the remaining electrons and as a result the remaining electrons are more strongly attracted by the nucleus and in this way the atomic size is decreased. Due to this increased nuclear attraction and reduced atomic size, it bcomes difficult to remove more electeon from the positively charged ion of reduced size. This is the reason that each successive ionization of electron requires a greater amount of energy.
The ionization energy has inverse relation with the size or radius of an atom. This also justifies the reason that why each successive ionization of an electron requires greater amount of energy.
If one starts with 0.020 g of Mg, 0.0008 moles of H2 would be made if the reaction is complete.
Going by the balanced equation of reaction in the image, 1 mole of Mg will produce 1 mole of H2 in a complete reaction.
If 0.020 g of Mg is started with:
mole of Mg = mass/molar mass
= 0.020/24.3
= 0.0008 moles
Since the mole of Mg to H2 is 1:1, thus, 0.0008 moles of H2 will also be made from the reaction.
More on stoichiometry can be found here: brainly.com/question/9743981
Explanation:
your answer is Kelvin because it is the SI unit of temperature
B. Fluorine (F) is the right answer