Answer:
They are both colorless, odorless, and tasteless. They have the same number of valence electrons too. And unbalanced electrons in their valence shell.
Explanation:
Answer: pH = 2,897 , basic![[H+][OH-] = 10^{-14} ==> [H+] = \frac{10^{-14}}{7,89*10^{-12} } =\frac{1}{789} \\pH= -lg([H+]) = 2,897 \\pH basic](https://tex.z-dn.net/?f=%5BH%2B%5D%5BOH-%5D%20%3D%2010%5E%7B-14%7D%20%3D%3D%3E%20%5BH%2B%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B7%2C89%2A10%5E%7B-12%7D%20%7D%20%3D%5Cfrac%7B1%7D%7B789%7D%20%5C%5CpH%3D%20-lg%28%5BH%2B%5D%29%20%3D%202%2C897%20%5C%5CpH%3C7%20%3D%3D%3E%20basic)
Explanation:
<span>Heavier atoms make denser materials</span>
<span>Kr has 8 valence electrons plus 1 for each Kr-F single bond. Total = 10 elcetrons
</span>
<span>79.70 grams
First, calculate the molar mass of Na2CO3 by looking up the molar mass of the elements used in it.
Sodium = 22.989769
Carbon = 12.0107
Oxygen = 15.999
Multiply each molar mass by the number of atoms used, and sum the results to get the molar mass
2 * 22.989769 + 12.0107 + 3 * 15.999 =105.9872
Finally, multiply the molar mass by the number of moles you need.
0.752 * 105.9872 = 79.7024 grams</span>