Answer:
<em>3.27*10^22</em>
Step-by-step explanation:
Given the expression 9.6x10^85/3x10^63, we are to write it on scientific notation as shown:
9.6x10^85/3x10^63
= (9.8/3) * (10^85/10^63)
= (9.8/3) * 10^{85-63}
= (9.8/3) *10^22
= 3.27 *10^22
<em>Hence the expression in scientific notation is 3.27*10^22</em>
139, 149, 159, 169, 179, 189, 199, 209, 219, 229, 239, 249, 259.
The common difference is 13.
Let n = 52
Let d = common difference
a_52 = 139 + (52 - 1)(13)
a_52 = 139 + (51)(13)
a_52 = 139 + 663
a_52 = 802
Answer:
68.26% probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
This is the pvalue of Z when X = 8.6 subtracted by the pvalue of Z when X = 6.4. So
X = 8.6



has a pvalue of 0.8413
X = 6.4



has a pvalue of 0.1587
0.8413 - 0.1587 = 0.6826
68.26% probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
List the hours from 1 to 8
Multiply the hours by how much she is paid per hour ( $12)
X: 1, 2, 3, 4, 5, 6, 7, 8
y: 12, 24, 36, 48, 60, 72, 84, 96