Answer:
The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an external wire.
Explanation:
I believe the answer is B. PO4-3
Answer:
The porpoise would hear its echo first because sound travels faster in water than in air. The bat would hear its echo first because the amplitude of sound waves ...
Explanation:
Answer:
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)
Explanation:
Data Given:
Moles = n = 3.2 mol
Temperature = T = 312 K
Pressure = P = ?
Volume = V = 87 m³ = 87000 L
Formula Used:
Let's assume that the gas is acting as an Ideal gas, the according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for P,
P = n R T / V
Putting Values,
P = (3.2 mol × 0.082057 atm.L.mol⁻¹.K⁻¹ × 312 K) ÷ 87000 L
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)
Answer:
The value of the equilibrium constant = 5.213
Explanation:
Here
(equilibrium constant) is referred to as the partial pressure of product divided by the partial pressure of reactant with each pressure term raised to power that is equal to its stoichiometric coefficient in balanced equation
.
As such only gas appear in
expression as solids takes a value of 1;
SO ; in the given equation from the question:
2 A (g) + B (s) ----> 2 C(s) + D (g)
![K_p = \dfrac{[D]}{[A]^2}](https://tex.z-dn.net/?f=K_p%20%3D%20%5Cdfrac%7B%5BD%5D%7D%7B%5BA%5D%5E2%7D)


The value of the equilibrium constant = 5.213