Assuming that the O2 gas acts like an ideal gas, we find
the following expression to be approximates of the behaviour of this gas:
<span>P V = n R T --->
1</span>
where,
P = pressure exerted by the gas
V = volume occupied
n = number of moles
R = universal gas constant
T = absolute temperature
Further, we assume that the number of moles and the
temperature are constant, hence reducing equation 1 into the form:
<span>P V = k --->
2</span>
where k is a constant. Therefore we can equate two
states:
P1 V1 = P2 V2
Since P1, V1 and V2 are given and we are to look for P2:
25 mL * 2 atm = 100 mL * P2
<span>P2 = 0.5 atm</span>
If mirrors did not reflect light, then we would be able to see through it.
Answer:
The temperature at which the reaction changes from non-spontaneous to spontaneous is 588.735 K
Explanation:
The spontaneity of a reaction is determined by the change in Gibbs Free Energy,
.

If
is greater than zero, then a reaction is feasible.
If
is less than zero, then a reaction is not feasible.
To determine the temperature at which the reaction changes from non-spontaneous to spontaneous, we should equate the
to zero.
We take
as the limiting condition.

Therefore, the temperature is: 588.735K
Answer:
Percent error = 3.7%
Explanation:
Given data:
Density of Al cylinder = ?
Weight of cylinder = 18 g
Diameter = 1.3 cm
Height = 5.2 cm
Actual density of Al = 2.7 g/cm³
Percent error = ?
Solution:
First of all we will calculate the volume of cylinder through given formula.
V = πr²h
r = diameter /2
V = 22/7 × (0.65 cm)²× 5.2 cm
V = 22/7 × 0.4225cm²× 5.2 cm
V = 6.89 cm³
Now we will calculate the density.
d = m/v
d = 18 g/ 6.89 cm³
d = 2.6 g/cm³
Percent error:
Percent error = measured value - actual value /actual value × 100
Percent error = 2.6g/cm³ - 2.7g/cm³ /2.7g/cm³ × 100
Percent error = 3.7%
Negative sign shows that measured or experimental value is less than actual value.