Answer:
the probability that a random sample of 17 persons will exceed the weight limit of 3,417 pounds is 0.0166
Step-by-step explanation:
The summary of the given statistical data set are:
Sample Mean = 186
Standard deviation = 29
Maximum capacity 3,417 pounds or 17 persons.
sample size = 17
population mean =3417
The objective is to determine the probability that a random sample of 17 persons will exceed the weight limit of 3,417 pounds
In order to do that;
Let assume X to be the random variable that follows the normal distribution;
where;
Mean
= 186 × 17 = 3162
Standard deviation = 
Standard deviation = 119.57






Therefore; the probability that a random sample of 17 persons will exceed the weight limit of 3,417 pounds is 0.0166
Answer:
12.26
Step-by-step explanation:
Hope this helps!
~Luck here from black clover~
UwU
To find the median of the numbers you’ll have to find the middle of the numbers.
So,you order them least to greatest:
14.1, 16.0, 20.7, 20.8, 24.3
If you search the number in the middle, the number would be 20.7 is the middle or median
Hope this helps! ;)
Answer:
Step-by-step explanation:
According to the given question, a tire company has developed a new type of steel-belted radial tire. Extensive testing indicates the population of mileages obtained by all tires of this new type is normally distributed with a mean of 37,000 miles and a standard deviation of 3,887 miles.
Let us define X be the random variable shows that the mileages tires normally distributed with
mean
μ = 37000
standard deviation
σ
=3, 887
Therefore
X ~ (μ = 37000, σ =3,887)
The company wishes to offer a guarantee providing a discount on a new set of tires if the original tires purchased do not exceed the mileage stated in the guarantee. Therefore the guaranteed mileage be if the tire company desires that no more than 2 percent of the tires will fail to meet the guaranteed mileage is determined as:
P(X < k) = 0.02

From the standard normal curve 2% area is determined as -2.0537 and hence
If we consider z value at two decimal places then

Therefore the guaranteed 29032 mileage be if the tire company desires that no more than 2 percent of the tires will fail to meet the guaranteed mileage.
The area under the standard normal curve is determined as: