<span>294400 cal
The heating of the water will have 3 phases
1. Melting of the ice, the temperature will remain constant at 0 degrees C
2. Heating of water to boiling, the temperature will rise
3. Boiling of water, temperature will remain constant at 100 degrees C
So, let's see how many cal are needed for each phase.
We start with 320 g of ice and 100 g of liquid, both at 0 degrees C. We can ignore the liquid and focus on the ice only. To convert from the solid to the liquid, we need to add the heat of fusion for each gram. So multiply the amount of ice we have by the heat of fusion.
80 cal/g * 320 g = 25600 cal
Now we have 320 g of ice that's been melted into water and the 100 g of water we started with, resulting in 320 + 100 = 420 g of water at 0 degrees C. We need to heat that water to 100 degrees C
420 * 100 = 42000 cal
Finally, we have 420 g of water at the boiling point. We now need to pump in an additional 540 cal/g to boil it all away.
420 g * 540 cal/g = 226800 cal
So the total number of cal used is
25600 cal + 42000 cal + 226800 cal = 294400 cal</span>
A Method of procedure that has characterized natural science in include systematic observation, measurement, and experiment
it also include the formation, testing, and modification of hypothesis
i hope it helps out
Draw CO2, C in the middle and O on each side. O has 6 e- and C has 4, so 6+6+4= 14 e-.
Answer:
24.525 g of sulfuric acid.
Explanation:
Hello,
Normality (units of eq/L) is defined as:

Since the sulfuric acid is the solute, and we already have the volume of the solution (500 mL) but we need it in liters (0.5 L, just divide into 1000), the equivalent grams of solute are given by:

Now, since the sulfuric acid is diprotic (2 hydrogen atoms in its formula) 1 mole of sulfuric acid has 2 equivalent grams of sulfuric acid, so the mole-mass relationship is developed to find its required mass as follows:

Best regards.
Answer:

Explanation:
Hello,
In this case, for the sample of the given compound, we can compute the moles of each atom (carbon, hydrogen and oxygen) that is present in the sample as shown below:
- Moles of carbon are contained in the 9.582 grams of carbon dioxide:

- Moles of hydrogen are contained in the 3.922 grams of water:

- Mass of oxygen is computed by subtracting both the mass of carbon and hydrogen in carbon dioxide and water respectively from the initial sample:

Finally, we compute the percent by mass of oxygen:

Regards.