Glucose is used by intestinal cells and red blood cells, while the rest reaches the liver, adipose tissue and muscle cells, where it is absorbed and stored as glycogen.
(it is saved to be used later)
Answer:
[HI] = 0.264M
Explanation:
Based on the equilibrium:
2HI(g) ⇄ H₂(g) + I₂(g)
It is possible to define Kc of the reaction as the ratio between concentration of products and reactants using coefficients of each compound, thus:
<em>Kc = 0.0156 = [H₂] [I₂] / [HI]²</em>
<em />
As initial concentration of HI is 0.660mol / 2.00L = <em>0.330M, </em>the equlibrium concentrations will be:
[HI] = 0.330M - 2X
[H₂] = X
[I₂] = X
<em>Where X is reaction coefficient.</em>
<em />
Replacing in Kc:
0.0156 = [X] [X] / [0.330M - 2X]²
0.0156 = X² / [0.1089 - 1.32X + 4X²
]
0.00169884 - 0.020592 X + 0.0624 X² = X²
0.00169884 - 0.020592 X - 0.9376 X² = 0
Solving for X:
X = - 0.055 → False solution, there is no negative concentrations
X = 0.0330 → Right solution.
Replacing in HI formula:
[HI] = 0.330M - 2×0.033M
<h3>[HI] = 0.264M</h3>
I believe that's is answer C because your ask about and increasment on the velocity in this observation
Formula : BaI₂. <span>barium iodide</span>