Answer: The empirical formula for the given compound is 
Explanation : Given,
Percentage of C = 38.8 %
Percentage of H = 16.2 %
Percentage of N = 45.1 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of C = 38.8 g
Mass of H = 16.2 g
Mass of N = 45.4 g
To formulate the empirical formula, we need to follow some steps:
Step 1: Converting the given masses into moles.
Moles of Carbon =
Moles of Hydrogen = 
Moles of Nitrogen = 
Step 2: Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 3.23 moles.
For Carbon = 
For Hydrogen = 
For Oxygen = 
Step 3: Taking the mole ratio as their subscripts.
The ratio of C : H : N = 1 : 5 : 1
Hence, the empirical formula for the given compound is 
Answer:
Compound are defined as the containing two or more different element .
(1) Ionic compound and (2) Covalent compound.
Explanation:
Covalent compound :- covalent compound are the sharing of electrons two or more atom.
Covalent compound are physical that lower points and compared to ionic .
Covalent compound that contain bond are carbon monoxide (co), and methane .
Covalent compound are share the pair of electrons.
Covalent compound are bonding a hydrogen atoms electron.
Ionic compound a large electrostatic actions between atoms.
Ionic compound are higher melting points and covalent compound.
Ionic compound are bonding a nonmetal electron.
Ionic electron can be donate and received ionic bond.
Ionic compound bonding kl.
Explanation:
Chemical reaction equation for the give decomposition of
is as follows:.

And, initially only
is present.
The given data is as follows.
= 2.3 atm at equilibrium
= 0.69 atm
Therefore,

= 0.23 aatm
So,
= 2.3 - 2(0.23)
= 1.84 atm
Now, expression for
will be as follows.


= 
= 0.0224
or, 
Thus, we can conclude that the pressure equilibrium constant for the decomposition of ammonia at the final temperature of the mixture is
.
We have to draw the structural formula of trans-1-bromo-3-isopropylcyclobutane.
The structure is shown below in Figure1.
The molecule trans-1-bromo-3-isopropylcyclobutane has four atoms in the skeleton and Br atom is attached at 1 position and isopropyl group at 3-position.
Trans structure means both groups are in opposite directions.
Answer:
I think 4 I got it right on edg but i duno if its the same
Explanation: