As mentioned above, phosphoric acid has 3 pKa values, and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq)
+ H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
At the highest pKa value (12.4) of phosphoric acid, the last OH group will lose its hydrogen. On the picture I attached, it is shown required protonated form of phosphoric acid before reaction whose pKa value is 12.4.
Answer:
Explanation:
soluble and insoluble salts are prepared by processes like neutralization reactions, simple displacement reactions and double displacement reactions.
The changes in the energy law of conservation of energy is Potential energy is converted to kinetic energy. Kinetic energy is converted into potential energy.
<h3>What is the law of conservation of energy?</h3>
Law of conservation of energy says that energy can neither be created nor destroyed, it just transformed from one form to another.
The energies are kinetic, potential, mechanical, gravitational, electrical, etc.
Thus, the changes in the energy law of conservation of energy is Potential energy is converted to kinetic energy. Kinetic energy is converted into potential energy.
Learn more about law of conservation of energy
brainly.com/question/20971995
#SPJ4
Without any ionization, the element (Cn) would have 112 electrons because the atomic number of an element is the number of protons the element has and a neutral element has the same number of electrons as it does protons.