Answer:
<em><u>solution</u></em>
<em>3</em><em>0</em><em>8</em><em>=</em><em>2</em><em>0</em><em> </em><em>swings</em><em> </em>
<em> </em><em>?</em><em>:</em><em>:</em><em>:</em><em> </em><em>=</em><em>1</em>
<em>(</em><em> </em><em>3</em><em>0</em><em>8</em><em>×</em><em>1</em><em>)</em><em>÷</em><em>2</em><em>0</em>
<em>3</em><em>0</em><em>8</em><em>÷</em><em>2</em><em>0</em>
<em>1</em><em>5</em><em>4</em><em>÷</em><em>1</em><em>0</em>
<em>=</em><em>1</em><em>5</em><em>.</em><em>4</em>
<em>=</em>15.4
Answer:
I think it's D. The expansion of water as it freezes increases the amount of nutrients that can dissolve in liquid water, but it could cause fluid in cells to dissolve more harmful substances.
Explanation:
I know when water freezes, it expands and between the two answers that discuss the expansion of water, D sounds the most logical to me lol.
Answer:
- When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
- If the mass of the object was doubled, it would experience an acceleration of half the magnitude
Explanation:
When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
From Newton's second law of motion, the acceleration of the object is given as;
a = ∑F / m
a = -F / m
The negative value of "a" indicates acceleration to the left
where;
∑F is the net force on the object
m is the mass of the object
At a constant force, F = ma ⇒ m₁a₁ = m₂a₂
If the mass of the object was doubled, m₂ = 2m₁
a₂ = (m₁a₁) / (m₂)
a₂ = (m₁a₁) / (2m₁)
a₂ = ¹/₂(a₁)
Therefore, the following can be deduced from the acceleration of this object;
- When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
- If the mass of the object was doubled, it would experience an acceleration of half the magnitude
Player 2 because moment is mass times acceleration and since they are all going the same speed. Speed doesn't matter so the only thing that is left is mass/ weight and he has the most
I think shock waves require more speed they travel at the speed of sound