Answer:
The independent variable is plotted on the x-axis. This is the variable that is being manipulated or controlled.
Answer:
1st, 2nd, and 4th
Explanation:
1st conserves gasoline/petroleum
2nd conserves electricity
4th conserves paper
Answer:
a) 1.6*10^6 V
b) 13.35*10^6 V
Explanation:
The electric potential at origin is the sum of the contribution of the two charges. You use the following formula:
(1)
q1 = 3.90µC = 3.90*10^-6 C
q2 = -2.4µC = -2.4*10^-6 C
r1 = 1.25 cm = 0.0125 m
r2 = -1.80 cm = -0.018 m
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
You replace all the parameters in the equation (1):
![V=k[\frac{q_1}{r_1}+\frac{q_2}{r_2}]\\\\V=(8.98*10^9Nm^2/C^2)[\frac{3.90*10^{-6}C}{0.0125m}+\frac{-2.4*10^{-6}C}{0.018m}]=1.6*10^6V](https://tex.z-dn.net/?f=V%3Dk%5B%5Cfrac%7Bq_1%7D%7Br_1%7D%2B%5Cfrac%7Bq_2%7D%7Br_2%7D%5D%5C%5C%5C%5CV%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5B%5Cfrac%7B3.90%2A10%5E%7B-6%7DC%7D%7B0.0125m%7D%2B%5Cfrac%7B-2.4%2A10%5E%7B-6%7DC%7D%7B0.018m%7D%5D%3D1.6%2A10%5E6V)
hence, the total electric potential is approximately 1.6*10^6 V
b) For the coordinate (1.50 cm , 0) = (0.015 m, 0) you have:
r1 = 0.0150m - 0.0125m = 0.0025m
r2= 0.015m + 0.018m = 0.033m
Then, you replace in the equation (1):
![V=(8.98*10^9Nm^2/C^2)[\frac{3.90*10^{-6}C}{0.0025m}+\frac{-2.4*10^{-6}C}{0.033m}]=13.35*10^6V](https://tex.z-dn.net/?f=V%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5B%5Cfrac%7B3.90%2A10%5E%7B-6%7DC%7D%7B0.0025m%7D%2B%5Cfrac%7B-2.4%2A10%5E%7B-6%7DC%7D%7B0.033m%7D%5D%3D13.35%2A10%5E6V)
hence, for y = 1.50cm you obtain V = 13.35*10^6 V
For starters, this question isn’t really about relativity. It’s about
energy, and E=mc^2 only makes sense if energy has the units of
(mass)*(velocity)^2. So we might as well ask: why is kinetic energy
defined as KE = ½*mv^2?
Answer:
option (D)
Explanation:
Here initial rotation speed is given, final rotation speed is given and asking for time.
If we use
A) θ=θ0+ω0t+(1/2)αt2
For this equation, we don't have any information about the value of angular displacement and angular acceleration, so it is not useful.
B) ω=ω0+αt
For this equation, we don't have any information about angular acceleration, so it is not useful.
C) ω2=ω02+2α(θ−θ0)
In this equation, time is not included, so it is not useful.
D) So, more information is needed.
Thus, option (D) is true.