1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
2 years ago
14

Circus a path along which electric current flows how would changing the battery in a circuit from 9 V to 1.5 V most likely affec

t the circuit
Physics
2 answers:
irina [24]2 years ago
7 0
Yeah what he said


















cirus














a










path










along











which















electric
Nimfa-mama [501]2 years ago
4 0
When we reduce the voltage in circuit from 9 volts from 1.5 volts the flow of the current will also get reduced in a circuit.
You might be interested in
A 0.29 kg particle moves in an xy plane according to x(t) = - 19 + 1 t - 3 t3 and y(t) = 20 + 7 t - 9 t2, with x and y in meters
Artist 52 [7]

Answer:

Part a)

F = 7.76 N

Part b)

\theta = -137.7 degree

Part c)

\theta = -127.7 degree

Explanation:

As we know that acceleration is rate of change in velocity of the object

So here we know that

x = -19 + t - 3t^3

y = 20 + 7t - 9t^2

Part a)

differentiate x and y two times with respect to time to find the acceleration

a_x = \frac{d^2}{dt^2}(-19 + t - 3t^3)

a_x = \frac{d}{dt}(0 +1 - 9t^2)

a_x = -18t

a_y = \frac{d^2}{dt^2}(20 + 7t - 9t^2)

a_y = \frac{d}{dt}(0 +7 - 18t)

a_y = -18

Now the acceleration of the object is given as

\vec a = (-18t)\hat i + (-18)\hat j

at t= 1.1 s we have

\vec a = -19.8 \hat i - 18 \hat j

now the net force of the object is given as

\vec F = m\vec a

\vec F = (0.29 kg)(-19.8 \hat i - 18 \hat j)

\vec F = -5.74 \hat i - 5.22 \hat j

now magnitude of the force will be

F = \sqrt{5.74^2 + 5.22^2} = 7.76 N

Part b)

Direction of the force is given as

tan\theta = \frac{F_y}{F_x}

tan\theta = \frac{-5.22}{-5.74}

\theta = -137.7 degree

Part c)

For velocity of the particle we have

v_x = \frac{dx}[dt}

v_x = (0 +1 - 9t^2)

v_y = \frac{dy}{dt}

v_y = (0 +7 - 18t)

now at t = 1.1 s

\vec v = -9.89\hat i - 12.8 \hat j

now the direction of the velocity is given as

\theta = tan^{-1}(\frac{v_y}{v_x})

\theta = tan^{-1}(\frac{-12.8}{-9.89})

\theta = -127.7 degree

7 0
2 years ago
If izzy mass is 0.3kg he applide 657.9n force what will be the accelration​
Sholpan [36]

Answer:

The acceleration of the body, a = 2193 m/s²

Explanation:

Given,

The mass of the body, m = 0.3 kg

The force acting on the body, F = 657.9 N

The force acting on an object is proportional to the product of mass and acceleration of the body.

                         F = m x a

Therefore, the acceleration of the body is

                           a = F / m

                              = 657.9 N / 0.3 kg

                              = 2193 m/s²

Hence, the acceleration of the body, a = 2193 m/s²

4 0
3 years ago
How is voltmeter connected in the circuit to measure the potential difference between two points?
34kurt

Voltmeter is used to find the potential difference between two points.

We always connect it in parallel to the points where we need the potential difference.

Here in order to make the reading accurate we can increase the resistance of voltmeter so that it can not withdraw any current from the circuit.

7 0
3 years ago
What is the magnification of an astronomical telescope whose objective lens has a focal length of 74 cm and whose eyepiece has a
Novay_Z [31]

Answer:

The magnification of an astronomical telescope is -30.83.

Explanation:

The expression for the magnification of an astronomical telescope is as follows;

M=-\frac{f_o}{f_e}

Here, M is the magnification of an astronomical telescope, f_e is the focal length of the eyepiece lens and f_o is the focal length of the objective lens.

It is given in the problem that an astronomical telescope having a focal length of objective lens 74 cm and whose eyepiece has a focal length of 2.4 cm.

Put f_o=74 cm and f_e=2.4 cm in the above expression.

M=-\frac{74}{2.4}

M=-30.83

Therefore, the magnification of an astronomical telescope is -30.83.

5 0
3 years ago
What would happen to the moon if there was no sun and earth ?
iragen [17]

Answer:

High tides would be much smaller than they are now, and low tides would be even lower. This is because the sun would be influencing the tides, not the moon; however, the sun has a weaker pull, which would decrease the tides. ... Winds could become much faster and much stronger without the moon.

Explanation:

google

4 0
3 years ago
Other questions:
  • In the first tenth of a second in a collision, the vehicle and everything inside are going at different ____________.
    7·2 answers
  • The circuit below shows some of the circuitry in a small toy robot. When the circuit is on the robot moves its arms, the motor,
    13·1 answer
  • Help please!!!!!!!!!!
    8·1 answer
  • A spacecraft built in the shape of a sphere moves past an observer on the Earth with a speed of 0.500c. What shape does the obse
    13·1 answer
  • Which statements accurately describe sound waves? Check all that apply
    11·2 answers
  • A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction is 0.36. To start th
    12·1 answer
  • Which of the following objects is in static equilibrium?
    10·1 answer
  • What is the Law of Conservation of Energy?
    6·2 answers
  • 9. Name an object that has a great mass but has a small volume​
    10·1 answer
  • a force pushes the cart for 1 s, starting from rest. to achieve the same speed with a force half as big, the force would need to
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!